IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025562.html
   My bibliography  Save this article

Investigation of the correlation between OH*, CH* chemiluminescence and heat release rate in methane inverse diffusion flame

Author

Listed:
  • Yan, Shuai
  • Gong, Yan
  • Duan, Zhengqiao
  • Guo, Qinghua
  • Yu, Guangsuo

Abstract

The characterization of the heat release rate is of great importance for studying the combustion process. In this work, the correlation between heat release rate and OH*, CH* chemiluminescence in methane inverse diffusion flame is explored with a numerical simulation over a wide range of oxygen/fuel equivalence ratios and methane flow rates. It is found that the flame heat release rate is mainly related to the formation and consumption of the species OH, C2H2, CH3, CH4, CO, CO2, H, H2O and O. The ground state OH concentration gradient is correlated with the heat release rate distribution, and the peak location of the gradient in the ground state OH concentration aligns with the peak location of the heat release rate. The outline of the OH* distribution is consistent with the profile of the maximum of the OH concentration gradient. CH* is used to indicate the main distribution of the heat release rate, and the outline of the OH* distribution coincides with the outline of the heat release rate.

Suggested Citation

  • Yan, Shuai & Gong, Yan & Duan, Zhengqiao & Guo, Qinghua & Yu, Guangsuo, 2023. "Investigation of the correlation between OH*, CH* chemiluminescence and heat release rate in methane inverse diffusion flame," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025562
    DOI: 10.1016/j.energy.2023.129162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Z.L. & Leung, C.W. & Cheung, C.S. & Huang, Z.H., 2017. "Single-valued prediction of markers on heat release rate for laminar premixed biogas-hydrogen and methane-hydrogen flames," Energy, Elsevier, vol. 133(C), pages 35-45.
    2. Soltanian, Hossein & Targhi, Mohammad Zabetian & Pasdarshahri, Hadi, 2019. "Chemiluminescence usage in finding optimum operating range of multi-hole burners," Energy, Elsevier, vol. 180(C), pages 398-404.
    3. Elbaz, A.M. & Moneib, H.A. & Shebil, K.M. & Roberts, W.L., 2019. "Low NOX - LPG staged combustion double swirl flames," Renewable Energy, Elsevier, vol. 138(C), pages 303-315.
    4. Zhou, Taotao & Tang, Peng & Ye, Taohong, 2023. "Machine learning based heat release rate indicator of premixed methane/air flame under wide range of equivalence ratio," Energy, Elsevier, vol. 263(PE).
    5. De Giorgi, Maria Grazia & Ficarella, Antonio & Sciolti, Aldebara & Pescini, Elisa & Campilongo, Stefano & Di Lecce, Giorgio, 2017. "Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators," Energy, Elsevier, vol. 126(C), pages 689-706.
    6. Kim, Tae Young & Kim, Young Hoo & Ahn, Yeong Jong & Choi, Sun & Kwon, Oh Chae, 2019. "Combustion stability of inverse oxygen/hydrogen coaxial jet flames at high pressure," Energy, Elsevier, vol. 180(C), pages 121-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kapusta, Łukasz Jan & Shuang, Chen & Aldén, Marcus & Li, Zhongshan, 2020. "Structures of inverse jet flames stabilized on a coaxial burner," Energy, Elsevier, vol. 193(C).
    2. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2021. "Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach," Energy, Elsevier, vol. 236(C).
    3. Huang, Yakun & He, Xiaomin & Jin, Yi & Zhu, Huanyu & Zhu, Zhixin, 2021. "Effect of non-uniform inlet profile on the combustion performance of an afterburner with bluff body," Energy, Elsevier, vol. 216(C).
    4. Yılmaz, Semih & Kumlutaş, Dilek & Yücekaya, Utku Alp & Cumbul, Ahmet Yakup, 2021. "Prediction of the equilibrium compositions in the combustion products of a domestic boiler," Energy, Elsevier, vol. 233(C).
    5. Sharma, Debojit & Lee, Bok Jik & Dash, Sukanta Kumar & Reddy, V. Mahendra, 2023. "Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner," Energy, Elsevier, vol. 272(C).
    6. Lamioni, Rachele & Bronzoni, Cristiana & Folli, Marco & Tognotti, Leonardo & Galletti, Chiara, 2022. "Feeding H2-admixtures to domestic condensing boilers: Numerical simulations of combustion and pollutant formation in multi-hole burners," Applied Energy, Elsevier, vol. 309(C).
    7. Mardani, Amir & Khanehzar, Andisheh, 2019. "Numerical assessment of MILD combustion enhancement through plasma actuator," Energy, Elsevier, vol. 183(C), pages 172-184.
    8. Kim, Young Hoo & Kim, Jae Hyun & Kwon, Oh Chae, 2023. "Combustion characteristics of O2/CH4 coaxial jet flames in a model combustor through their visualization and the statistical analysis," Energy, Elsevier, vol. 275(C).
    9. Zhou, Taotao & Tang, Peng & Ye, Taohong, 2023. "Machine learning based heat release rate indicator of premixed methane/air flame under wide range of equivalence ratio," Energy, Elsevier, vol. 263(PE).
    10. Ghazanfar Mehdi & Sara Bonuso & Maria Grazia De Giorgi, 2021. "Effects of Nanosecond Repetitively Pulsed Discharges Timing for Aeroengines Ignition at Low Temperature Conditions by Needle-Ring Plasma Actuator," Energies, MDPI, vol. 14(18), pages 1-19, September.
    11. Zare, Saeid & Lo, Hao Wei & Roy, Shrabanti & Askari, Omid, 2020. "On the low-temperature plasma discharge in methane/air diffusion flames," Energy, Elsevier, vol. 197(C).
    12. Peng, Yudan & Fu, Guangming & Chen, Jiying & Sun, Baojiang & Sun, Xiaohui, 2024. "Bottom-hole pressure inversion method for nature gas wells based on blowout combustion flame shape parameters," Energy, Elsevier, vol. 294(C).
    13. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    14. Wei, Zhilong & Zhen, Haisheng & Leung, Chunwah & Cheung, Chunshun & Huang, Zuohua, 2020. "Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame," Energy, Elsevier, vol. 196(C).
    15. Li, Yueh-Heng & Chen, Chih-Ting & Fang, Hui-Kuan, 2019. "Effects of a microwave-induced corona discharge plasma on premixed methane-air flames," Energy, Elsevier, vol. 188(C).
    16. Cai, Tao & Zhao, Dan & Sun, Yuze & Ni, Siliang & Li, Weixuan & Guan, Di & Wang, Bing, 2021. "Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Abay Mukhamediyarovich Dostiyarov & Dias Raybekovich Umyshev & Andrey Anatolievich Kibarin & Ayaulym Konusbekovna Yamanbekova & Musagul Elekenovich Tumanov & Gulzira Ainadinovna Koldassova & Maxat Arg, 2024. "Experimental Investigation of Non-Premixed Combustion Process in a Swirl Burner with LPG and Hydrogen Mixture," Energies, MDPI, vol. 17(5), pages 1-14, February.
    18. Yılmaz, Semih & Kumlutaş, Dilek & Özer, Özgün & Yücekaya, Utku Alp & Avcı, Hasan & Cumbul, Ahmet Yakup, 2024. "Parametric investigation of premixed gas inlet conditions effects on flow and combustion characteristics," Applied Energy, Elsevier, vol. 353(PA).
    19. Said, Syed A. & Aliyu, Mansur & Nemitallah, Medhat A. & Habib, Mohamed A. & Mansir, Ibrahim B., 2018. "Experimental investigation of the stability of a turbulent diffusion flame in a gas turbine combustor," Energy, Elsevier, vol. 157(C), pages 904-913.
    20. Wang, Du & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Tang, Chuanqi, 2019. "Experimental investigation on near wall ignited lean methane/hydrogen/air flame," Energy, Elsevier, vol. 168(C), pages 1094-1103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.