IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp678-688.html
   My bibliography  Save this article

Combustion of jojoba-oil/diesel blends in a small scale furnace

Author

Listed:
  • Al Omari, Salah A.B.
  • Hamdan, Mohammad O.
  • Selim, Mohamed YE.
  • Elnajjar, Emad

Abstract

This experimental study investigates the combustion and pollutants emissions from a small scale furnace burning diesel fuel blended with raw jojoba oil. Jojoba oil to diesel proportions in the blends (on mass basis) ranging from 0 to 35% are considered for total blended fuel flow rate of about 8 kg/h. Higher fuel supply rates of about 10 kg/h were needed in order to allow for reaching higher jojoba share in the blends up to about 60%. This allows for securing sufficient amount of the higher volatility component (diesel) whose combustion would support the vaporization and subsequent ignition and combustion of the heavier jojoba oil. The presence of jojoba in the blends leads to a clear reduction in NOx and hydrocarbon (HC) emissions but it showed less impact on CO levels. Due to its high viscosity, jojoba in the blends impacts spray formation hence seems to have an indirect detrimental effect on CO emissions. Moreover, jojoba oil in the blends adversely impact thermal radiation to furnace walls due to less sooting tendency of the flame when jojoba is present. To some extent, this is also attributed to the way jojoba influences spray processes.

Suggested Citation

  • Al Omari, Salah A.B. & Hamdan, Mohammad O. & Selim, Mohamed YE. & Elnajjar, Emad, 2019. "Combustion of jojoba-oil/diesel blends in a small scale furnace," Renewable Energy, Elsevier, vol. 131(C), pages 678-688.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:678-688
    DOI: 10.1016/j.renene.2018.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al Omari, S.-A.B. & Abu-Jdayil, B., 2013. "Some considerations of the performance of small dual fuel furnaces fueled with a gaseous fuel and a liquid fuel mix containing used engine lube oil," Renewable Energy, Elsevier, vol. 56(C), pages 117-122.
    2. Selim, M.Y.E. & Radwan, M.S. & Elfeky, S.M.S., 2003. "Combustion of jojoba methyl ester in an indirect injection diesel engine," Renewable Energy, Elsevier, vol. 28(9), pages 1401-1420.
    3. Hamdan, Mohammad O. & Selim, Mohamed Y.E. & Al-Omari, Salah-A.B. & Elnajjar, Emad, 2015. "Hydrogen supplement co-combustion with diesel in compression ignition engine," Renewable Energy, Elsevier, vol. 82(C), pages 54-60.
    4. Hashimoto, Nozomu & Nishida, Hiroyuki & Kimoto, Masayoshi & Tainaka, Kazuki & Ikeda, Atsushi & Umemoto, Satoshi, 2018. "Effects of Jatropha oil blending with C-heavy oil on soot emissions and heat absorption balance characteristics for boiler combustion," Renewable Energy, Elsevier, vol. 126(C), pages 924-932.
    5. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    6. Selim, Mohamed Y.E. & Radwan, M.S. & Saleh, H.E., 2008. "Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds," Renewable Energy, Elsevier, vol. 33(6), pages 1173-1185.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Ho Young & Han, Karam & Kim, Hyun Hee & Park, Sangbin & Jang, Jihoon & Yu, Geun Sil & Ko, Ji Ho, 2020. "Comparisons of combustion characteristics between bioliquid and heavy fuel oil combustion in a 0.7 MWth pilot furnace and a 75 MWe utility boiler," Energy, Elsevier, vol. 192(C).
    2. Gao, Zhiming & Gluesenkamp, Kyle & Gehl, Anthony & Pihl, Josh & LaClair, Tim & Zhang, Mingkan & Sulejmanovic, Dino & Munk, Jeffrey & Nawaz, Kashif, 2022. "Ultra-clean condensing gas furnace enabled with acidic gas reduction," Energy, Elsevier, vol. 243(C).
    3. Sandouqa, Arwa & Al-Hamamre, Zayed, 2021. "Economical evaluation of jojoba cultivation for biodiesel production in Jordan," Renewable Energy, Elsevier, vol. 177(C), pages 1116-1132.
    4. Mamdouh T. Ghannam & Mohamed Y. E. Selim, 2021. "Rheological Properties of the Jojoba Biofuel," Sustainability, MDPI, vol. 13(11), pages 1-12, May.
    5. Antonov, D.V. & Dorokhov, V.V. & Nagibin, P.S. & Shlegel, N.E. & Strizhak, P.A., 2024. "Co-combustion of methane hydrate granules and liquid biofuel," Renewable Energy, Elsevier, vol. 221(C).
    6. Mohamed Y. E. Selim & Mamdouh T. Ghannam & Bishoy N. Abdo & Youssef A. Attai & Mohsen S. Radwan, 2022. "Raw Jojoba Oil as a Sustainable Fuel to Diesel Engines and Comparison with Diesel Fuel," Energies, MDPI, vol. 15(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.
    2. Mohamed Y. E. Selim & Mamdouh T. Ghannam & Bishoy N. Abdo & Youssef A. Attai & Mohsen S. Radwan, 2022. "Raw Jojoba Oil as a Sustainable Fuel to Diesel Engines and Comparison with Diesel Fuel," Energies, MDPI, vol. 15(16), pages 1-17, August.
    3. Sandouqa, Arwa & Al-Hamamre, Zayed, 2019. "Energy analysis of biodiesel production from jojoba seed oil," Renewable Energy, Elsevier, vol. 130(C), pages 831-842.
    4. Haik, Yousef & Selim, Mohamed Y.E. & Abdulrehman, Tahir, 2011. "Combustion of algae oil methyl ester in an indirect injection diesel engine," Energy, Elsevier, vol. 36(3), pages 1827-1835.
    5. Saleh, H.E., 2009. "Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester," Renewable Energy, Elsevier, vol. 34(10), pages 2178-2186.
    6. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    7. Yang, W.M. & An, H. & Li, J. & Duan, L., 2015. "Impact of methane addition on the performance of biodiesel fueled diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 784-792.
    8. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    10. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    11. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    12. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    13. Elbaz, A.M. & Moneib, H.A. & Shebil, K.M. & Roberts, W.L., 2019. "Low NOX - LPG staged combustion double swirl flames," Renewable Energy, Elsevier, vol. 138(C), pages 303-315.
    14. Feng, Yanbiao & Dong, Zuomin, 2019. "Optimal control of natural gas compression engine hybrid electric mining trucks for balanced fuel efficiency and overall emission improvement," Energy, Elsevier, vol. 189(C).
    15. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N., 2018. "Effect of hydrogen fuel flow rate, fuel injection timing and exhaust gas recirculation on the performance of dual fuel engine powered with renewable fuels," Renewable Energy, Elsevier, vol. 126(C), pages 79-94.
    16. Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Zhenyu Zhang & Zhaoyi Xie & Hao Wang, 2015. "An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine," Energies, MDPI, vol. 8(7), pages 1-17, June.
    17. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    18. Selim, Mohamed Y.E. & Radwan, M.S. & Saleh, H.E., 2008. "Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds," Renewable Energy, Elsevier, vol. 33(6), pages 1173-1185.
    19. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    20. Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:678-688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.