IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p411-d201439.html
   My bibliography  Save this article

Model Predictive-Based Secondary Frequency Control Considering Heat Pump Water Heaters

Author

Listed:
  • Arman Oshnoei

    (Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983969411, Iran)

  • Rahmat Khezri

    (College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia)

  • S. M. Muyeen

    (Department of Electrical and Computer Engineering, Curtin University, Perth, WA 6845, Australia)

Abstract

The extensive development of renewable energies in power systems causes several problems due to intermittent output power generation. To tackle the challenge, demand response contribution to ancillary service is currently well recognized under the smart grid infrastructure. The application of the heat pump water heater (HPWH) as a controllable load in primary frequency control is well presented in the literature; however, the motivation of this paper is to use HPWHs for secondary frequency control. To this end, a model predictive control (MPC) method for a two-area power system incorporating HPWHs to contribute to secondary frequency control is proposed in this paper. A detailed model of HPWH is employed as a controllable load to control the power consumption during water heating. The MPC method predicts the future control signals using a quadratic programming-based optimization. It uses the system model, past inputs and outputs, as well as system control signals to predict the next signals. The effective performance of the proposed method for the two-area power system with HPWH is demonstrated for different scenarios of load changes, intermittent renewable power generation and parameter variations as the sensitivity analysis.

Suggested Citation

  • Arman Oshnoei & Rahmat Khezri & S. M. Muyeen, 2019. "Model Predictive-Based Secondary Frequency Control Considering Heat Pump Water Heaters," Energies, MDPI, vol. 12(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:411-:d:201439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo-Qiang Zeng & Xiao-Qing Xie & Min-Rong Chen, 2017. "An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Rahmat Khezri & Arman Oshnoei & Mehrdad Tarafdar Hagh & SM Muyeen, 2018. "Coordination of Heat Pumps, Electric Vehicles and AGC for Efficient LFC in a Smart Hybrid Power System via SCA-Based Optimized FOPID Controllers," Energies, MDPI, vol. 11(2), pages 1-21, February.
    3. Falahati, Saber & Taher, Seyed Abbas & Shahidehpour, Mohammad, 2016. "Grid frequency control with electric vehicles by using of an optimized fuzzy controller," Applied Energy, Elsevier, vol. 178(C), pages 918-928.
    4. Jiří Fink & Richard P. Van Leeuwen, 2016. "Earliest Deadline Control of a Group of Heat Pumps with a Single Energy Source," Energies, MDPI, vol. 9(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    2. Omid Sadeghian & Arash Moradzadeh & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Fausto Pedro Garcia Marquez, 2020. "Generation Units Maintenance in Combined Heat and Power Integrated Systems Using the Mixed Integer Quadratic Programming Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
    3. Ce Wang & Xiangjie Liu & Kwang Y. Lee, 2023. "Two-Layer Robust Distributed Predictive Control for Load Frequency Control of a Power System under Wind Power Fluctuation," Energies, MDPI, vol. 16(12), pages 1-15, June.
    4. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Oshnoei, Arman & Kheradmandi, Morteza & Blaabjerg, Frede & Hatziargyriou, Nikos D. & Muyeen, S.M. & Anvari-Moghaddam, Amjad, 2022. "Coordinated control scheme for provision of frequency regulation service by virtual power plants," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arya, Yogendra, 2019. "AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1+PI) controller," Renewable Energy, Elsevier, vol. 134(C), pages 796-806.
    2. Adlan Pradana & Mejbaul Haque & Mithulanathan Nadarajah, 2023. "Control Strategies of Electric Vehicles Participating in Ancillary Services: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-36, February.
    3. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    4. Héctor Migallón & Akram Belazi & José-Luis Sánchez-Romero & Héctor Rico & Antonio Jimeno-Morenilla, 2020. "Settings-Free Hybrid Metaheuristic General Optimization Methods," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    5. Kaleem Ullah & Abdul Basit & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez, 2022. "Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-24, February.
    6. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    7. Liu, Liuchen & Zhu, Tong & Pan, Yu & Wang, Hai, 2017. "Multiple energy complementation based on distributed energy systems – Case study of Chongming county, China," Applied Energy, Elsevier, vol. 192(C), pages 329-336.
    8. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    9. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Jia, Hongjie & Li, Xiaomeng & Mu, Yunfei & Xu, Chen & Jiang, Yilang & Yu, Xiaodan & Wu, Jianzhong & Dong, Chaoyu, 2018. "Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays," Applied Energy, Elsevier, vol. 210(C), pages 1363-1376.
    11. Oshnoei, Arman & Kheradmandi, Morteza & Blaabjerg, Frede & Hatziargyriou, Nikos D. & Muyeen, S.M. & Anvari-Moghaddam, Amjad, 2022. "Coordinated control scheme for provision of frequency regulation service by virtual power plants," Applied Energy, Elsevier, vol. 325(C).
    12. Yuemin Zheng & Jin Tao & Hao Sun & Qinglin Sun & Zengqiang Chen & Matthias Dehmer & Quan Zhou, 2021. "Load Frequency Active Disturbance Rejection Control for Multi-Source Power System Based on Soft Actor-Critic," Energies, MDPI, vol. 14(16), pages 1-17, August.
    13. Chassin, David P. & Behboodi, Sahand & Shi, Yang & Djilali, Ned, 2017. "H2-optimal transactive control of electric power regulation from fast-acting demand response in the presence of high renewables," Applied Energy, Elsevier, vol. 205(C), pages 304-315.
    14. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    15. Muhammad Majid Gulzar & Muhammad Iqbal & Sulman Shahzad & Hafiz Abdul Muqeet & Muhammad Shahzad & Muhammad Majid Hussain, 2022. "Load Frequency Control (LFC) Strategies in Renewable Energy-Based Hybrid Power Systems: A Review," Energies, MDPI, vol. 15(10), pages 1-23, May.
    16. Lin, Haiyang & Fu, Kun & Wang, Yu & Sun, Qie & Li, Hailong & Hu, Yukun & Sun, Bo & Wennersten, Ronald, 2019. "Characteristics of electric vehicle charging demand at multiple types of location - Application of an agent-based trip chain model," Energy, Elsevier, vol. 188(C).
    17. Faisal R. Badal & Zannatun Nayem & Subrata K. Sarker & Dristi Datta & Shahriar Rahman Fahim & S. M. Muyeen & Md. Rafiqul Islam Sheikh & Sajal K. Das, 2021. "A Novel Intrusion Mitigation Unit for Interconnected Power Systems in Frequency Regulation to Enhance Cybersecurity," Energies, MDPI, vol. 14(5), pages 1-18, March.
    18. Mahmut Temel ÖZDEMİR & Dursun ÖZTÜRK, 2017. "Comparative Performance Analysis of Optimal PID Parameters Tuning Based on the Optics Inspired Optimization Methods for Automatic Generation Control," Energies, MDPI, vol. 10(12), pages 1-19, December.
    19. Minghui Yang & Chunsheng Wang & Yukun Hu & Zijian Liu & Caixin Yan & Shuhang He, 2020. "Load Frequency Control of Photovoltaic Generation-Integrated Multi-Area Interconnected Power Systems Based on Double Equivalent-Input-Disturbance Controllers," Energies, MDPI, vol. 13(22), pages 1-19, November.
    20. Omid Sadeghian & Arash Moradzadeh & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Fausto Pedro Garcia Marquez, 2020. "Generation Units Maintenance in Combined Heat and Power Integrated Systems Using the Mixed Integer Quadratic Programming Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:411-:d:201439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.