Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2018.06.093
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Masakazu Toda & Atsushi Takagaki & Mai Okamura & Junko N. Kondo & Shigenobu Hayashi & Kazunari Domen & Michikazu Hara, 2005. "Biodiesel made with sugar catalyst," Nature, Nature, vol. 438(7065), pages 178-178, November.
- Konwar, Lakhya Jyoti & Boro, Jutika & Deka, Dhanapati, 2014. "Review on latest developments in biodiesel production using carbon-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 546-564.
- Guo, Feng & Xiu, Zhi-Long & Liang, Zhi-Xia, 2012. "Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst," Applied Energy, Elsevier, vol. 98(C), pages 47-52.
- Ezebor, Francis & Khairuddean, Melati & Abdullah, Ahmad Zuhairi & Boey, Peng Lim, 2014. "Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters," Energy, Elsevier, vol. 70(C), pages 493-503.
- Ngaosuwan, Kanokwan & Goodwin, James G. & Prasertdham, Piyasan, 2016. "A green sulfonated carbon-based catalyst derived from coffee residue for esterification," Renewable Energy, Elsevier, vol. 86(C), pages 262-269.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Bingxin & Gao, Ming & Geng, Jiayu & Cheng, Yuwei & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Liu, Shu & Cheung, Siu Ming, 2021. "Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction," Renewable Energy, Elsevier, vol. 164(C), pages 824-832.
- Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
- Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.
- Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Xie, Haijiao, 2023. "Reduced surface sulphonic acid concentration Alleviates carbon-based solid acid catalysts deactivation in biodiesel production," Energy, Elsevier, vol. 271(C).
- Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2023. "Fabrication of surface-modified dual waste-derived biochar for biodiesel production by microwave-assisted esterification of oleic acid: Optimization, kinetics, and mechanistic studies," Renewable Energy, Elsevier, vol. 218(C).
- Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Cheung, Siu Ming & Chen, Xiankun, 2023. "Esterification efficiency improvement of carbon-based solid acid catalysts induced by biomass pretreatments: Intrinsic mechanism," Energy, Elsevier, vol. 263(PB).
- Wang, Yi-Tong & Yang, Xing-Xia & Xu, Jie & Wang, Hong-Li & Wang, Zi-Bing & Zhang, Lei & Wang, Shao-Long & Liang, Jing-Long, 2019. "Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst," Renewable Energy, Elsevier, vol. 139(C), pages 688-695.
- Bingxin Zhang & Xiaona Wang & Weiqi Tang & Chuanfu Wu & Qunhui Wang & Xiaohong Sun, 2023. "Carbon-Based Solid Acid Catalyzed Esterification of Soybean Saponin-Acidified Oil with Methanol Vapor for Biodiesel Synthesis," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
- Khan, Ihtisham Wali & Naeem, Abdul & Farooq, Muhammad & Mahmood, Tahira & Ahmad, Bashir & Hamayun, Muhammad & Ahmad, Zahoor & Saeed, Tooba, 2020. "Catalytic conversion of spent frying oil into biodiesel over raw and 12-tungsto-phosphoric acid modified clay," Renewable Energy, Elsevier, vol. 155(C), pages 181-188.
- Mendaros, Czarina M. & Go, Alchris W. & Nietes, Winston Jose T. & Gollem, Babe Eden Joy O. & Cabatingan, Luis K., 2020. "Direct sulfonation of cacao shell to synthesize a solid acid catalyst for the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 152(C), pages 320-330.
- Rocha, Pablo D. & Oliveira, Leandro S. & Franca, Adriana S., 2019. "Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification," Renewable Energy, Elsevier, vol. 143(C), pages 1710-1716.
- Go, Alchris Woo & Quijote, Kristelle L. & Alivio, Roxanne Kathlyn O. & Ju, Yi-Hsu & Gunarto, Chintya & Angkawijaya, Artik Elisa & Santoso, Shella Permatasari & Yuliana, Maria, 2022. "Pre-functionalized and lipid-dense post-hydrolysis rice bran as feedstock for FAME production via non-isothermal in-situ (trans)esterification with subcritical methanol," Renewable Energy, Elsevier, vol. 189(C), pages 13-24.
- Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bureros, Glorie Mae A. & Tanjay, April A. & Cuizon, Dan Elmer S. & Go, Alchris W. & Cabatingan, Luis K. & Agapay, Ramelito C. & Ju, Yi-Hsu, 2019. "Cacao shell-derived solid acid catalyst for esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 138(C), pages 489-501.
- Zailan, Zarifah & Tahir, Muhammad & Jusoh, Mazura & Zakaria, Zaki Yamani, 2021. "A review of sulfonic group bearing porous carbon catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 175(C), pages 430-452.
- Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
- Dawodu, Folasegun A. & Ayodele, Olubunmi & Xin, Jiayu & Zhang, Suojiang & Yan, Dongxia, 2014. "Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst," Applied Energy, Elsevier, vol. 114(C), pages 819-826.
- Pessoa Junior, Wanison A.G. & Takeno, Mitsuo L. & Nobre, Francisco X. & Barros, Silma de S. & Sá, Ingrity S.C. & Silva, Edson P. & Manzato, Lizandro & Iglauer, Stefan & de Freitas, Flávio A., 2020. "Application of water treatment sludge as a low-cost and eco-friendly catalyst in the biodiesel production via fatty acids esterification: Process optimization," Energy, Elsevier, vol. 213(C).
- Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Cheung, Siu Ming & Chen, Xiankun, 2023. "Esterification efficiency improvement of carbon-based solid acid catalysts induced by biomass pretreatments: Intrinsic mechanism," Energy, Elsevier, vol. 263(PB).
- Konwar, Lakhya Jyoti & Boro, Jutika & Deka, Dhanapati, 2014. "Review on latest developments in biodiesel production using carbon-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 546-564.
- Bora, Akash Pratim & Dhawane, Sumit H. & Anupam, Kumar & Halder, Gopinath, 2018. "Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst," Renewable Energy, Elsevier, vol. 121(C), pages 195-204.
- Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
- Lokman, Ibrahim M. & Rashid, Umer & Taufiq-Yap, Yun Hin & Yunus, Robiah, 2015. "Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst," Renewable Energy, Elsevier, vol. 81(C), pages 347-354.
- Ngaosuwan, Kanokwan & Goodwin, James G. & Prasertdham, Piyasan, 2016. "A green sulfonated carbon-based catalyst derived from coffee residue for esterification," Renewable Energy, Elsevier, vol. 86(C), pages 262-269.
- Hernández-Montelongo, Rosaura & García-Sandoval, Juan Paulo & González-Álvarez, Alejandro & Dochain, Denis & Aguilar-Garnica, Efrén, 2018. "Biodiesel production in a continuous packed bed reactor with recycle: A modeling approach for an esterification system," Renewable Energy, Elsevier, vol. 116(PA), pages 857-865.
- Mendaros, Czarina M. & Go, Alchris W. & Nietes, Winston Jose T. & Gollem, Babe Eden Joy O. & Cabatingan, Luis K., 2020. "Direct sulfonation of cacao shell to synthesize a solid acid catalyst for the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 152(C), pages 320-330.
- Thushari, Indika & Babel, Sandhya & Samart, Chanatip, 2019. "Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst," Renewable Energy, Elsevier, vol. 134(C), pages 125-134.
- El yaakouby, Ichraq & Rhrissi, Ilyass & Abouliatim, Youness & Hlaibi, Miloudi & Kamil, Noureddine, 2023. "Moroccan sardine scales as a novel and renewable source of heterogeneous catalyst for biodiesel production using palm fatty acid distillate," Renewable Energy, Elsevier, vol. 217(C).
- Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
- Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Xie, Haijiao, 2023. "Reduced surface sulphonic acid concentration Alleviates carbon-based solid acid catalysts deactivation in biodiesel production," Energy, Elsevier, vol. 271(C).
- Yang, Jinfan & Ao, Zhifeng & Wu, Hao & Zhang, Sufeng & Chi, Concong & Hou, Chen & Qian, Liwei, 2020. "Waste paper-derived magnetic carbon composite: A novel eco-friendly solid acid for the synthesis of n-butyl levulinate from furfuryl alcohol," Renewable Energy, Elsevier, vol. 146(C), pages 477-483.
- Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
- Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
More about this item
Keywords
Solid acid catalyst; Sugarcane bagasse; Catalytic activity; Biodiesel production; FFA conversion; Carbon-based catalyst;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:510-523. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.