IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v129y2018ipap553-560.html
   My bibliography  Save this article

Mathematical and experimental analysis on solar thermal energy harvesting performance of the textile-based solar thermal energy collector

Author

Listed:
  • Jia, Hao
  • Cheng, Xiaomei
  • Zhu, Jingjing
  • Li, Zhaoling
  • Guo, Jiansheng

Abstract

Textile-based solar thermal energy collectors (TSTECs) are one kind of novel flexible solar thermal harvesting products, which can be widely applied in the fields of building roofs and facades. In this paper, a proposed numerical model was developed to calculate the solar energy harvesting performance of textile-based solar thermal energy collectors with different layers of textile composites. Also, the outdoor tests were performed to confirm the effectiveness of the designed system and to validate the simulation results. It is found out that the numerical results showed a good agreement with the experimental results. As a consequence, the developed numerical model serves as a useful tool to predict and design the most promising and optimal performance of TSTEC with high efficiency. This research brings some progress in the field of textile-based solar thermal energy harvesting products and they can potentially extend to be widely used in an industrial application that needs heating supply in low-to-medium temperature level.

Suggested Citation

  • Jia, Hao & Cheng, Xiaomei & Zhu, Jingjing & Li, Zhaoling & Guo, Jiansheng, 2018. "Mathematical and experimental analysis on solar thermal energy harvesting performance of the textile-based solar thermal energy collector," Renewable Energy, Elsevier, vol. 129(PA), pages 553-560.
  • Handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:553-560
    DOI: 10.1016/j.renene.2018.05.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118306220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kessentini, Hamdi & Castro, Jesus & Capdevila, Roser & Oliva, Assensi, 2014. "Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system," Applied Energy, Elsevier, vol. 133(C), pages 206-223.
    2. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    3. Kim, Yong Sin & Balkoski, Kevin & Jiang, Lun & Winston, Roland, 2013. "Efficient stationary solar thermal collector systems operating at a medium-temperature range," Applied Energy, Elsevier, vol. 111(C), pages 1071-1079.
    4. Yeh, Ho-ming & Lin, Tong-Tshien, 1996. "Efficiency improvement of flat-plate solar air heaters," Energy, Elsevier, vol. 21(6), pages 435-443.
    5. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    6. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillermo Martínez-Rodríguez & Amanda L. Fuentes-Silva & Juan R. Lizárraga-Morazán & Martín Picón-Núñez, 2019. "Incorporating the Concept of Flexible Operation in the Design of Solar Collector Fields for Industrial Applications," Energies, MDPI, vol. 12(3), pages 1-20, February.
    2. Alok Dhaundiyal, 2022. "Developing a Grey Forecasting Model for the Air Flowing across the Parallel Plate Duct," Energies, MDPI, vol. 15(15), pages 1-19, July.
    3. Rui Li & Guomin Cui, 2022. "Comprehensive Performance Evaluation of a Dual-Function Active Solar Thermal Façade System Based on Energy, Economic and Environmental Analysis in China," Energies, MDPI, vol. 15(11), pages 1-19, June.
    4. Strušnik, Dušan & Brandl, Daniel & Schober, Helmut & Ferčec, Janko & Avsec, Jurij, 2020. "A simulation model of the application of the solar STAF panel heat transfer and noise reduction with and without a transparent plate: A renewable energy review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    6. Lugo, S. & García-Valladares, O. & Best, R. & Hernández, J. & Hernández, F., 2019. "Numerical simulation and experimental validation of an evacuated solar collector heating system with gas boiler backup for industrial process heating in warm climates," Renewable Energy, Elsevier, vol. 139(C), pages 1120-1132.
    7. Jo, Ho Hyeon & Kang, Yujin & Yang, Sungwoong & Kim, Young Uk & Yun, Beom Yeol & Chang, Jae D. & Kim, Sumin, 2022. "Application and evaluation of phase change materials for improving photovoltaic power generation efficiency and roof overheating reduction," Renewable Energy, Elsevier, vol. 195(C), pages 1412-1425.
    8. Tucker Harvey, S. & Khovanov, I.A. & Murai, Y. & Denissenko, P., 2020. "Characterisation of aeroelastic harvester efficiency by measuring transient growth of oscillations," Applied Energy, Elsevier, vol. 268(C).
    9. Choi, Youngjin, 2020. "Performance evaluation of air and liquid-based solar heating systems in various climates in East Asia," Renewable Energy, Elsevier, vol. 162(C), pages 685-700.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    2. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    3. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    4. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    5. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Ji, W.H. & Wang, Z.Y. & Liang, L., 2019. "Thermal performance of a thermal-storage unit by using a multichannel flat tube and rectangular fins," Applied Energy, Elsevier, vol. 250(C), pages 1280-1291.
    6. Ibrahim Sufian Osman & Nasir Ghazi Hariri, 2022. "Thermal Investigation and Optimized Design of a Novel Solar Self-Driven Thermomechanical Actuator," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    7. Kessentini, Hamdi & Castro, Jesus & Capdevila, Roser & Oliva, Assensi, 2014. "Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system," Applied Energy, Elsevier, vol. 133(C), pages 206-223.
    8. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Jahan Zeb Alvi & Yu Jinghu & Yongqiang Feng & Muhammad Asim & Wang Qian & Gang Pei, 2022. "Performance Assessment of Direct Vapor Generation Solar Organic Rankine Cycle System Coupled with Heat Storage," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    10. Khan, Zakir & Khan, Zulfiqar Ahmad, 2017. "Experimental investigations of charging/melting cycles of paraffin in a novel shell and tube with longitudinal fins based heat storage design solution for domestic and industrial applications," Applied Energy, Elsevier, vol. 206(C), pages 1158-1168.
    11. Shi, Lei & Hu, Yanwei & Bai, Yijie & He, Yurong, 2020. "Dynamic tuning of magnetic phase change composites for solar-thermal conversion and energy storage," Applied Energy, Elsevier, vol. 263(C).
    12. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    13. Jahan Zeb Alvi & Yongqiang Feng & Qian Wang & Muhammad Imran & Lehar Asip Khan & Gang Pei, 2020. "Effect of Phase Change Material Storage on the Dynamic Performance of a Direct Vapor Generation Solar Organic Rankine Cycle System," Energies, MDPI, vol. 13(22), pages 1-19, November.
    14. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland, 2018. "Non-tracking East-West XCPC solar thermal collector for 200 celsius applications," Applied Energy, Elsevier, vol. 216(C), pages 521-533.
    15. Hobold, Gustavo M. & da Silva, Alexandre K., 2017. "Critical phenomena and their effect on thermal energy storage in supercritical fluids," Applied Energy, Elsevier, vol. 205(C), pages 1447-1458.
    16. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    17. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    18. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    19. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    20. Mohammad, Mehedi Bin & Brooks, Geoffrey Alan & Rhamdhani, M. Akbar, 2017. "Thermal analysis of molten ternary lithium-sodium-potassium nitrates," Renewable Energy, Elsevier, vol. 104(C), pages 76-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:553-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.