IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp1412-1425.html
   My bibliography  Save this article

Application and evaluation of phase change materials for improving photovoltaic power generation efficiency and roof overheating reduction

Author

Listed:
  • Jo, Ho Hyeon
  • Kang, Yujin
  • Yang, Sungwoong
  • Kim, Young Uk
  • Yun, Beom Yeol
  • Chang, Jae D.
  • Kim, Sumin

Abstract

With the development of countries, concerns about global warming have increased. Many countries are taking steps to implement green building-related policies to reduce carbon dioxide emissions; however, these policies are generally applied to new buildings. Therefore, this study focused on the applicability of phase change materials (PCMs) and the optimal application method for educational buildings that have a long service period and are difficult to dismantle among existing buildings. The best application is focused on reducing the building energy demand. phase change materials were applied to address concerns regarding surface temperatures of the building. The passive element, phase change material integrated brick, was applied to the roof, while the active element was a phase change material packed into the back of photovoltaic (PV) panels. Five scenarios were considered in assessing these technologies. photovoltaic installation on the roof surface was assumed for all scenarios, except scenario 1. In scenario 3, the phase change material was applied to the back of the photovoltaic panel, and in scenario 4, a brick layer impregnated with the phase change material was added to the roof surface. In scenario 5, the technologies of scenarios 3 and 4 were applied in combination. As a result of the analysis across the five scenarios, a maximum annual cooling load reduction of 14 521.6 kWh was derived. The overall heating demand increased, with the maximum annual heating demand increasing by 7134.2 kWh. Electrical energy was produced by installing photovoltaic panels, and energy savings were achieved; the highest overall load reduction rate was 22.55%. The calculated shortest payback period was seven years, which is reasonable. Based on cost and energy aspects, scenario 4 is considered the optimal retrofit plan. These results suggest that significant cost and energy savings can be achieved through building renovation with phase change materials.

Suggested Citation

  • Jo, Ho Hyeon & Kang, Yujin & Yang, Sungwoong & Kim, Young Uk & Yun, Beom Yeol & Chang, Jae D. & Kim, Sumin, 2022. "Application and evaluation of phase change materials for improving photovoltaic power generation efficiency and roof overheating reduction," Renewable Energy, Elsevier, vol. 195(C), pages 1412-1425.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:1412-1425
    DOI: 10.1016/j.renene.2022.06.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122009594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xi, J. & Li, Y. & Liu, M. & Wang, R.Z., 2017. "Study on the thermal effect of the ground heat exchanger of GSHP in the eastern China area," Energy, Elsevier, vol. 141(C), pages 56-65.
    2. Zhang, Xingtian & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping & Liu, Yujie, 2017. "A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads," Applied Energy, Elsevier, vol. 204(C), pages 1535-1543.
    3. Cho, Hyun Mi & Yun, Beom Yeol & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building," Applied Energy, Elsevier, vol. 275(C).
    4. Wang, Rong & Hasanefendic, Sandra & Von Hauff, Elizabeth & Bossink, Bart, 2022. "The cost of photovoltaics: Re-evaluating grid parity for PV systems in China," Renewable Energy, Elsevier, vol. 194(C), pages 469-481.
    5. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Xie, Xing & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2021. "Turning points emerging in the effect of thermal conductivity of phase change materials on utilization rate of latent heat in buildings," Renewable Energy, Elsevier, vol. 179(C), pages 1522-1536.
    7. Bethi, Rajagopal Vinod & Laws, Praveen & Kumar, Pankaj & Mitra, Santanu, 2019. "Modified Savonius wind turbine for harvesting wind energy from trains moving in tunnels," Renewable Energy, Elsevier, vol. 135(C), pages 1056-1063.
    8. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.
    9. Paul E. Brockway & Anne Owen & Lina I. Brand-Correa & Lukas Hardt, 2019. "Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources," Nature Energy, Nature, vol. 4(7), pages 612-621, July.
    10. Wijeratne, W.M. Pabasara Upalakshi & Samarasinghalage, Tharushi Imalka & Yang, Rebecca Jing & Wakefield, Ron, 2022. "Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase," Applied Energy, Elsevier, vol. 309(C).
    11. Yan, Shurong & Fazilati, Mohammad Ali & Toghraie, Davood & Khalili, Mohamad & Karimipour, Aliakbar, 2021. "Energy cost and efficiency analysis of greenhouse heating system enhancement using phase change material: An experimental study," Renewable Energy, Elsevier, vol. 170(C), pages 133-140.
    12. Hadipour, Amirhosein & Rajabi Zargarabadi, Mehran & Rashidi, Saman, 2021. "An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis," Renewable Energy, Elsevier, vol. 164(C), pages 867-875.
    13. Jia, Hao & Cheng, Xiaomei & Zhu, Jingjing & Li, Zhaoling & Guo, Jiansheng, 2018. "Mathematical and experimental analysis on solar thermal energy harvesting performance of the textile-based solar thermal energy collector," Renewable Energy, Elsevier, vol. 129(PA), pages 553-560.
    14. Kan, Junwu & Fan, Chuntao & Wang, Shuyun & Zhang, Zhonghua & Wen, Jianming & Huang, Leshuai, 2016. "Study on a piezo-windmill for energy harvesting," Renewable Energy, Elsevier, vol. 97(C), pages 210-217.
    15. Carmona, Mauricio & Palacio Bastos, Alberto & García, José Doria, 2021. "Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 172(C), pages 680-696.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    2. Zheng, Peng & Qi, Lingfei & Sun, Mengdie & Luo, Dabing & Zhang, Zutao, 2021. "A novel wind energy harvesting system with hybrid mechanism for self-powered applications in subway tunnels," Energy, Elsevier, vol. 227(C).
    3. Fan, Chengliang & Li, Hai & Zhang, Zutao & Pan, Yajia & Wu, Xiaoping & Ahmed, Ammar, 2023. "An H-shaped coupler energy harvester for application in heavy railways," Energy, Elsevier, vol. 270(C).
    4. Melkie Getnet Tadesse & Esubalew Kasaw & Biruk Fentahun & Emil Loghin & Jörn Felix Lübben, 2022. "Banana Peel and Conductive Polymers-Based Flexible Supercapacitors for Energy Harvesting and Storage," Energies, MDPI, vol. 15(7), pages 1-20, March.
    5. Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
    6. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    7. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    8. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    9. Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
    10. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
    11. Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
    12. Tsai, I-Chun, 2024. "A wise investment by urban governments: Evidence from intelligent sports facilities," Journal of Asian Economics, Elsevier, vol. 92(C).
    13. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    14. Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
    15. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    16. Yang, Wei-Wei & Tang, Xin-Yuan & Ma, Xu & Li, Jia-Chen & Xu, Chao & He, Ya-Ling, 2023. "Rapid prediction, optimization and design of solar membrane reactor by data-driven surrogate model," Energy, Elsevier, vol. 285(C).
    17. Jakub Frankowski & Wojciech Czekała, 2023. "Agricultural Plant Residues as Potential Co-Substrates for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-14, May.
    18. Rui Li & Guomin Cui, 2022. "Comprehensive Performance Evaluation of a Dual-Function Active Solar Thermal Façade System Based on Energy, Economic and Environmental Analysis in China," Energies, MDPI, vol. 15(11), pages 1-19, June.
    19. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    20. Xie, Xing & Xu, Bin & Cheng, Yuan-xia & Pei, Gang, 2023. "New method of integrating experiment for maintaining low indoor temperature into numerical modelling: A feasibility demonstration in reduced-scale building model," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:1412-1425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.