Development of heterogeneous alkali catalyst from waste chicken eggshell for biodiesel production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2018.05.048
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chakraborty, R. & Sahu, H., 2014. "Intensification of biodiesel production from waste goat tallow using infrared radiation: Process evaluation through response surface methodology and artificial neural network," Applied Energy, Elsevier, vol. 114(C), pages 827-836.
- Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
- Jamil, M. & Ahmad, Farzana & Jeon, Y.J., 2016. "Renewable energy technologies adopted by the UAE: Prospects and challenges – A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1181-1194.
- Marinković, Dalibor M. & Stanković, Miroslav V. & Veličković, Ana V. & Avramović, Jelena M. & Miladinović, Marija R. & Stamenković, Olivera O. & Veljković, Vlada B. & Jovanović, Dušan M., 2016. "Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1387-1408.
- Lu, Pengmei & Yuan, Zhenhong & Li, Lianhua & Wang, Zhongming & Luo, Wen, 2010. "Biodiesel from different oil using fixed-bed and plug-flow reactors," Renewable Energy, Elsevier, vol. 35(1), pages 283-287.
- Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
- Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
- Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pascoal, C.V.P. & Oliveira, A.L.L. & Figueiredo, D.D. & Assunção, J.C.C., 2020. "Optimization and kinetic study of ultrasonic-mediated in situ transesterification for biodiesel production from the almonds of Syagrus cearensis," Renewable Energy, Elsevier, vol. 147(P1), pages 1815-1824.
- Tamim, Rustam & Prasetyoko, Didik & Jovita, Stella & Ni'mah, Yatim Lailun & Nugraha, Reva Edra & Holilah, Holilah & Bahruji, Hasliza & Yusop, Rahimi & Asikin-Mijan, Nurul & Jalil, Aishah Abdul & Harta, 2024. "Low temperature pyrolysis of waste cooking oil using marble waste for bio-jet fuel production," Renewable Energy, Elsevier, vol. 232(C).
- Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.
- Xu, Chunping & Nasrollahzadeh, Mahmoud & Sajjadi, Mohaddeseh & Maham, Mehdi & Luque, Rafael & Puente-Santiago, Alain R., 2019. "Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 195-252.
- José A. León & Gisela Montero & Marcos A. Coronado & José R. Ayala & Daniela G. Montes & Laura J. Pérez & Lisandra Quintana & Jesús M. Armenta, 2022. "Thermodynamic Analysis of Waste Vegetable Oil Conversion to Biodiesel with Solar Energy," Energies, MDPI, vol. 15(5), pages 1-17, March.
- Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
- Li, Dongming & Feng, Wenping & Chen, Chao & Chen, Shangxing & Fan, Guorong & Liao, Shengliang & Wu, Guoqiang & Wang, Zongde, 2021. "Transesterification of Litsea cubeba kernel oil to biodiesel over zinc supported on zirconia heterogeneous catalysts," Renewable Energy, Elsevier, vol. 177(C), pages 13-22.
- Laskar, Ikbal Bahar & Deshmukhya, Tuhin & Bhanja, Piyali & Paul, Bappi & Gupta, Rajat & Chatterjee, Sushovan, 2020. "Transesterification of soybean oil at room temperature using biowaste as catalyst; an experimental investigation on the effect of co-solvent on biodiesel yield," Renewable Energy, Elsevier, vol. 162(C), pages 98-111.
- Che Zhao & Hongyuan Chen & Xiao Wu & Rui Shan, 2023. "Exploiting the Waste Biomass of Durian Shell as a Heterogeneous Catalyst for Biodiesel Production at Room Temperature," IJERPH, MDPI, vol. 20(3), pages 1-10, January.
- Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
- Hao, Xiaohong & Suo, Hang & Zhang, Guanhua & Xu, Peixing & Gao, Xin & Du, Su, 2021. "Ultrasound-assisted enzymatic preparation of fatty acid ethyl ester in deep eutectic solvent," Renewable Energy, Elsevier, vol. 164(C), pages 937-947.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
- Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
- Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
- Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
- Cong, Wen-Jie & Wang, Yi-Tong & Li, Hu & Fang, Zhen & Sun, Jie & Liu, Hai-Tong & Liu, Jie-Teng & Tang, Song & Xu, Lujiang, 2020. "Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash," Applied Energy, Elsevier, vol. 264(C).
- Xia, Shaige & Li, Jian & Chen, Guanyi & Tao, Junyu & Li, Wanqing & Zhu, Guangbin, 2022. "Magnetic reusable acid-base bifunctional Co doped Fe2O3–CaO nanocatalysts for biodiesel production from soybean oil and waste frying oil," Renewable Energy, Elsevier, vol. 189(C), pages 421-434.
- Liu, Kang & Wang, Rui & Yu, Meiqing, 2018. "An efficient, recoverable solid base catalyst of magnetic bamboo charcoal: Preparation, characterization, and performance in biodiesel production," Renewable Energy, Elsevier, vol. 127(C), pages 531-538.
- Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
- Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
- Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
- Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
- Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
- Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2019. "Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil," Renewable Energy, Elsevier, vol. 143(C), pages 77-90.
- Karmakar, Bisheswar & Pal, Sucharita & Gopikrishna, Konga & Tiwari, Onkar Nath & Halder, Gopinath, 2022. "Injection of superheated C1 and C3 alcohols in non-edible Pongamia pinnata oil for semi-continuous uncatalyzed biodiesel synthesis," Renewable Energy, Elsevier, vol. 185(C), pages 850-861.
- Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
- Bemani, Amin & Xiong, Qingang & Baghban, Alireza & Habibzadeh, Sajjad & Mohammadi, Amir H. & Doranehgard, Mohammad Hossein, 2020. "Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO- LSSVM models," Renewable Energy, Elsevier, vol. 150(C), pages 924-934.
- Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
- Ahmad O. Hasan & Khamis Essa & Mohamed R. Gomaa, 2022. "Synthesis, Structure Characterization and Study of a New Kind of Catalyst: A Monolith of Nickel Made by Additive Manufacturing Coated with Platinum," Energies, MDPI, vol. 15(20), pages 1-13, October.
More about this item
Keywords
Alkali catalyst; Calcium oxide; Eggshell; Process optimization; Transesterification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:128:y:2018:i:pa:p:142-154. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.