IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i5p687-700.html
   My bibliography  Save this article

Experimental evaluation of a non-isothermal high temperature solar particle receiver

Author

Listed:
  • Bertocchi, Rudi
  • Karni, Jacob
  • Kribus, Abraham

Abstract

The experimental evaluation of a solar particle receiver is reported. Concentrated irradiation was converted into thermal energy in a gas flow by a cloud of radiation absorbing sub-micrometre carbon particles. Average solar concentration was 2500 on an 80 mm diameter aperture. Cloud particle mass fractions were in the range of 0.2–0.5%. Exit gas temperatures exceeding 2100 K were measured with nitrogen, 1900 K with CO2, and 2000 K with air, which is 1000 K higher than previously reported using a particle receiver. The air heating tests reveal that the particle/gas heat transfer exceeded the oxygen/carbon oxidation rate up to 2000 K. A carbon particle mass fraction of less than 0.5% in the gas stream ensures that the heated air contains only a negligible amount of CO2 and NOx. The axial receiver cavity wall temperature increased with distance from the aperture, peaking at 60% of the total cavity length, and then slightly decreasing towards the exit plane. At steady conditions, the wall temperatures in the gas exit plane were at least 100 K cooler than the gas’s, alleviating structural constraints associated with conventional volumetric receivers. Estimated radiation to thermal energy conversion efficiencies surpassed 80% at the highest mass flow rates. The receiver accumulated over 12 net hours at temperatures above 1700 K without any major failures.

Suggested Citation

  • Bertocchi, Rudi & Karni, Jacob & Kribus, Abraham, 2004. "Experimental evaluation of a non-isothermal high temperature solar particle receiver," Energy, Elsevier, vol. 29(5), pages 687-700.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:5:p:687-700
    DOI: 10.1016/j.energy.2003.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203001774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2003.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngo, L.C. & Bello-Ochende, T. & Meyer, J.P., 2015. "Numerical modelling and optimisation of natural convection heat loss suppression in a solar cavity receiver with plate fins," Renewable Energy, Elsevier, vol. 74(C), pages 95-105.
    2. Cui, F.Q. & He, Y.L. & Cheng, Z.D. & Li, D. & Tao, Y.B., 2012. "Numerical simulations of the solar transmission process for a pressurized volumetric receiver," Energy, Elsevier, vol. 46(1), pages 618-628.
    3. Ying Yang & Yingjie Li & Xianyao Yan & Jianli Zhao & Chunxiao Zhang, 2021. "Development of Thermochemical Heat Storage Based on CaO/CaCO 3 Cycles: A Review," Energies, MDPI, vol. 14(20), pages 1-26, October.
    4. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
    5. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    6. Gimeno-Furió, Alexandra & Martínez-Cuenca, Raúl & Mondragón, Rosa & Gasulla, Antonio Fabián Vela & Doñate-Buendía, Carlos & Mínguez-Vega, Gladys & Hernández, Leonor, 2020. "Optical characterisation and photothermal conversion efficiency of a water-based carbon nanofluid for direct solar absorption applications," Energy, Elsevier, vol. 212(C).
    7. de Risi, A. & Milanese, M. & Laforgia, D., 2013. "Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids," Renewable Energy, Elsevier, vol. 58(C), pages 134-139.
    8. Potenza, Marco & Milanese, Marco & Colangelo, Gianpiero & de Risi, Arturo, 2017. "Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid," Applied Energy, Elsevier, vol. 203(C), pages 560-570.
    9. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
    10. Alonso, Elisa & Romero, Manuel, 2015. "Review of experimental investigation on directly irradiated particles solar reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 53-67.
    11. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    12. Khanafer, Khalil & Vafai, Kambiz, 2018. "A review on the applications of nanofluids in solar energy field," Renewable Energy, Elsevier, vol. 123(C), pages 398-406.
    13. Cui, Fuqing & He, Yaling & Cheng, Zedong & Li, Yinshi, 2013. "Study on combined heat loss of a dish receiver with quartz glass cover," Applied Energy, Elsevier, vol. 112(C), pages 690-696.
    14. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    15. Choi, Tae Jong & Kim, Sung Hyoun & Jang, Seok Pil & Lin, Lingnan & Kedzierski, M.A., 2020. "Aqueous nanofluids containing paraffin-filled MWCNTs for improving effective specific heat and extinction coefficient," Energy, Elsevier, vol. 210(C).
    16. Fuqiang, Wang & Lanxin, Ma & Ziming, Cheng & Jianyu, Tan & Xing, Huang & Linhua, Liu, 2017. "Radiative heat transfer in solar thermochemical particle reactor: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 935-949.
    17. Shubo Liu & Yi Yang & Kuiyuan Ma & Haichuan Jin & Xin Jin, 2022. "Experimental Study of Pulsating Heat Pipes Filled with Nanofluids under the Irradiation of Solar Simulator," Energies, MDPI, vol. 15(23), pages 1-15, December.
    18. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:5:p:687-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.