IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v148y2021ics1364032121005724.html
   My bibliography  Save this article

Holistic approach to wind turbine noise: From blade trailing-edge modifications to annoyance estimation

Author

Listed:
  • Merino-Martínez, Roberto
  • Pieren, Reto
  • Schäffer, Beat

Abstract

Wind turbines represent an encouraging option for sustainable energy but their noise emissions can be an issue for their public acceptance. Noise reduction measures, such as trailing-edge serrations or permeable inserts, seem to offer promising results in reducing wind turbine noise levels. This manuscript presents a novel holistic approach for perception-based evaluation of wind turbine noise and the performance of reduction measures using synthetic sound auralization. To demonstrate its feasibility, a case study featuring four state-of-the-art noise reduction trailing-edge add-ons synthetically applied to two full-scale wind turbines at nominal power is presented. The synthetic sound signals were auralized and propagated to three observer locations. The expected annoyance in each case was estimated by employing a combination of psychoacoustic sound quality metrics and a listening experiment featuring 16 participants. A close relation was found between the results of the psychoacoustic metrics and the listening experiment. In general, this holistic approach provides valuable information for the design of optimal noise reduction measures and wind turbines.

Suggested Citation

  • Merino-Martínez, Roberto & Pieren, Reto & Schäffer, Beat, 2021. "Holistic approach to wind turbine noise: From blade trailing-edge modifications to annoyance estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005724
    DOI: 10.1016/j.rser.2021.111285
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121005724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gibbons, Stephen, 2015. "Gone with the wind: Valuing the visual impacts of wind turbines through house prices," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 177-196.
    2. Zhu, Wei Jun & Shen, Wen Zhong & Barlas, Emre & Bertagnolio, Franck & Sørensen, Jens Nørkær, 2018. "Wind turbine noise generation and propagation modeling at DTU Wind Energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 133-150.
    3. Katinas, Vladislovas & Marčiukaitis, Mantas & Tamašauskienė, Marijona, 2016. "Analysis of the wind turbine noise emissions and impact on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 825-831.
    4. Alamir, Mahmoud A. & Hansen, Kristy L. & Zajamsek, Branko & Catcheside, Peter, 2019. "Subjective responses to wind farm noise: A review of laboratory listening test methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Makarewicz, R. & Gołebiewski, R., 2019. "The Influence of a low level jet on the thumps generated by a wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 337-342.
    6. Ofelia Jianu & Marc A. Rosen & Greg Naterer, 2012. "Noise Pollution Prevention in Wind Turbines: Status and Recent Advances," Sustainability, MDPI, vol. 4(6), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Akbar Firoozi & Farzad Hejazi & Ali Asghar Firoozi, 2024. "Advancing Wind Energy Efficiency: A Systematic Review of Aerodynamic Optimization in Wind Turbine Blade Design," Energies, MDPI, vol. 17(12), pages 1-30, June.
    2. Upma Singh & Mohammad Rizwan & Hasmat Malik & Fausto Pedro García Márquez, 2022. "Wind Energy Scenario, Success and Initiatives towards Renewable Energy in India—A Review," Energies, MDPI, vol. 15(6), pages 1-39, March.
    3. Plaga, Leonie Sara & Lynch, Muireann & Curtis, John & Bertsch, Valentin, 2024. "How public acceptance affects power system development—A cross-country analysis for wind power," Applied Energy, Elsevier, vol. 359(C).
    4. Jianwei Sun & Koichi Yonezawa & Eiji Shima & Hao Liu, 2023. "Integrated Evaluation of the Aeroacoustics and Psychoacoustics of a Single Propeller," IJERPH, MDPI, vol. 20(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gibbons, Stephen & Overman, Henry & Sarvimäki, Matti, 2021. "The local economic impacts of regeneration projects: Evidence from UK's single regeneration budget," Journal of Urban Economics, Elsevier, vol. 122(C).
    2. Frondel, Manuel & Kussel, Gerhard & Sommer, Stephan & Vance, Colin, 2019. "Local cost for global benefit: The case of wind turbines," Ruhr Economic Papers 791, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen, revised 2019.
    3. Dröes, Martijn I. & Koster, Hans R.A., 2016. "Renewable energy and negative externalities: The effect of wind turbines on house prices," Journal of Urban Economics, Elsevier, vol. 96(C), pages 121-141.
    4. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    5. van Vuuren, Aico, 2022. "Is There a Diminishing Value of Urban Amenities as a Result of the COVID-19 Pandemic?," IZA Discussion Papers 15025, Institute of Labor Economics (IZA).
    6. Pates, Nicholas J. & Kim, GwanSeon & Mark, Tyler B. & Ritter, Matthias, 2020. "Windfalls or wind falls? The Local Effects of Turbine Development on US Agricultural Land Values," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304611, Agricultural and Applied Economics Association.
    7. Steve Gibbons & Stephan Heblich & Esther Lho & Christopher Timmins, 2016. "Fear of Fracking? The Impact of the Shale Gas Exploration on House Prices in Britain," SERC Discussion Papers 0207, Centre for Economic Performance, LSE.
    8. Cao, Jiufa & Nyborg, Camilla Marie & Feng, Ju & Hansen, Kurt S. & Bertagnolio, Franck & Fischer, Andreas & Sørensen, Thomas & Shen, Wen Zhong, 2022. "A new multi-fidelity flow-acoustics simulation framework for wind farm application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Krekel, Christian & Zerrahn, Alexander, 2017. "Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 221-238.
    10. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    11. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.
    12. Gabriel M. Ahlfeldt & Nancy Holman, 2018. "Distinctively Different: A New Approach to Valuing Architectural Amenities," Economic Journal, Royal Economic Society, vol. 128(608), pages 1-33, February.
    13. Zheng, Xian & Peng, Wenwei & Hu, Mingzhi, 2020. "Airport noise and house prices: A quasi-experimental design study," Land Use Policy, Elsevier, vol. 90(C).
    14. Lei Fu & Tiantian Zhu & Kai Zhu & Yiling Yang, 2019. "Condition Monitoring for the Roller Bearings of Wind Turbines under Variable Working Conditions Based on the Fisher Score and Permutation Entropy," Energies, MDPI, vol. 12(16), pages 1-20, August.
    15. Shen, Wen Zhong & Zhu, Wei Jun & Barlas, Emre & Li, Ye, 2019. "Advanced flow and noise simulation method for wind farm assessment in complex terrain," Renewable Energy, Elsevier, vol. 143(C), pages 1812-1825.
    16. Dröes, Martijn I. & Koster, Hans R.A., 2021. "Wind turbines, solar farms, and house prices," Energy Policy, Elsevier, vol. 155(C).
    17. Ahlfeldt, Gabriel M. & Nitsch, Volker & Wendland, Nicolai, 2019. "Ease vs. noise: Long-run changes in the value of transport (dis)amenities," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    18. Winikoff, Justin B. & Maguire, Karen, 2024. "The Role of Commercial Energy Payments in Agricultural Producer Income," Economic Information Bulletin 342468, United States Department of Agriculture, Economic Research Service.
    19. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Scope elasticity and economic significance in discrete choice experiments," Discussion Papers 942, Statistics Norway, Research Department.
    20. Xinkai Li & Ke Yang & Hao Hu & Xiaodong Wang & Shun Kang, 2019. "Effect of Tailing-Edge Thickness on Aerodynamic Noise for Wind Turbine Airfoil," Energies, MDPI, vol. 12(2), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.