IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v43y2012icp73-82.html
   My bibliography  Save this article

Control of wind turbine power and vibration with a data-driven approach

Author

Listed:
  • Kusiak, Andrew
  • Zhang, Zijun

Abstract

An anticipatory control scheme for optimizing power and vibration of wind turbines is introduced. Two models optimizing the power generation and mitigating vibration of a wind turbine are developed using data collected from a large wind farm. To model the wind turbine vibration, two parameters, drive-train and tower acceleration, are introduced. The two parameters are measured with accelerometers. Data-mining algorithms are applied to establish models for estimating drive-train and tower acceleration parameters. The prediction accuracy of the data-driven models is examined in order to address their feasibility for an anticipatory control scheme. An optimization control model is established by integrating the data-driven models in the presence of constraints. A particle swarm optimization algorithm is applied to optimize the model.

Suggested Citation

  • Kusiak, Andrew & Zhang, Zijun, 2012. "Control of wind turbine power and vibration with a data-driven approach," Renewable Energy, Elsevier, vol. 43(C), pages 73-82.
  • Handle: RePEc:eee:renene:v:43:y:2012:i:c:p:73-82
    DOI: 10.1016/j.renene.2011.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111006264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    2. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2010. "Power optimization of wind turbines with data mining and evolutionary computation," Renewable Energy, Elsevier, vol. 35(3), pages 695-702.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
    2. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    3. Sun, Lei & Liu, Tianyuan & Xie, Yonghui & Zhang, Di & Xia, Xinlei, 2021. "Real-time power prediction approach for turbine using deep learning techniques," Energy, Elsevier, vol. 233(C).
    4. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    5. Vera-Tudela, Luis & Kühn, Martin, 2017. "Analysing wind turbine fatigue load prediction: The impact of wind farm flow conditions," Renewable Energy, Elsevier, vol. 107(C), pages 352-360.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    2. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    3. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    4. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    5. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    6. Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
    7. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    8. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    9. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    10. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    11. Doruk Cengiz & Arindrajit Dube & Attila S. Lindner & David Zentler-Munro, 2021. "Seeing Beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," NBER Working Papers 28399, National Bureau of Economic Research, Inc.
    12. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    13. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    14. Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
    15. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    16. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    17. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    18. Adler, Werner & Lausen, Berthold, 2009. "Bootstrap estimated true and false positive rates and ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 718-729, January.
    19. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    20. Andrea Sciandra & Alessio Surian & Livio Finos, 2021. "Supervised Machine Learning Methods to Disclose Action and Information in “U.N. 2030 Agenda” Social Media Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 689-699, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:43:y:2012:i:c:p:73-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.