IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i7p716-728.html
   My bibliography  Save this article

Effect of matrix cracking and material uncertainty on composite plates

Author

Listed:
  • Gayathri, P.
  • Umesh, K.
  • Ganguli, R.

Abstract

A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method. Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied. Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms.

Suggested Citation

  • Gayathri, P. & Umesh, K. & Ganguli, R., 2010. "Effect of matrix cracking and material uncertainty on composite plates," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 716-728.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:7:p:716-728
    DOI: 10.1016/j.ress.2010.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010000396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suo, Qinghui & Stewart, Mark G., 2009. "Corrosion cracking prediction updating of deteriorating RC structures using inspection information," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1340-1348.
    2. Singaravelu, J. & Jeyakumar, D. & Nageswara Rao, B., 2009. "Taguchi's approach for reliability and safety assessments in the stage separation process of a multistage launch vehicle," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1526-1541.
    3. Cadini, F. & Zio, E. & Avram, D., 2009. "Model-based Monte Carlo state estimation for condition-based component replacement," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 752-758.
    4. Durga Rao, K. & Gopika, V. & Sanyasi Rao, V.V.S. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2009. "Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 872-883.
    5. Pedregal, Diego J. & Carmen Carnero, Ma., 2009. "Vibration analysis diagnostics by continuous-time models: A case study," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 244-253.
    6. Crestaux, Thierry & Le Maıˆtre, Olivier & Martinez, Jean-Marc, 2009. "Polynomial chaos expansion for sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1161-1172.
    7. Weathers, J.B. & Luck, R. & Weathers, J.W., 2009. "An exercise in model validation: Comparing univariate statistics and Monte Carlo-based multivariate statistics," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1695-1702.
    8. Zio, Enrico & Gola, Giulio, 2009. "A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 78-88.
    9. Marseguerra, Marzio & Zio, Enrico, 2009. "Monte Carlo simulation for model-based fault diagnosis in dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 180-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parviz, Hadi & Fakoor, Mahdi, 2020. "Free vibration of a composite plate with spatially varying Gaussian properties under uncertain thermal field using assumed mode method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. Jiang, Shan & Li, Yan-Fu, 2021. "Dynamic Reliability Assessment of Multi-cracked Structure under Fatigue Loading via Multi-State Physics Model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Whiteside, M.B. & Pinho, S.T. & Robinson, P., 2012. "Stochastic failure modelling of unidirectional composite ply failure," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Baraldi, Piero & Mangili, Francesca & Zio, Enrico, 2013. "Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 94-108.
    3. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    4. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    6. Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
    7. Lindhe, Andreas & Norberg, Tommy & Rosén, Lars, 2012. "Approximate dynamic fault tree calculations for modelling water supply risks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 61-71.
    8. Ziegler, Philipp & Wartzack, Sandro, 2015. "Sensitivity Analysis of features in tolerancing based on constraint function level sets," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 324-333.
    9. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    10. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    11. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    12. Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
    13. Vodopivec, Neža & Miller-Hooks, Elise, 2019. "Transit system resilience: Quantifying the impacts of disruptions on diverse populations," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Qianwen Li & Ruyin Long & Hong Chen & Jichao Geng, 2017. "Low Purchase Willingness for Battery Electric Vehicles: Analysis and Simulation Based on the Fault Tree Model," Sustainability, MDPI, vol. 9(5), pages 1-20, May.
    15. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    16. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    17. Simeu-Abazi, Zineb & Lefebvre, Arnaud & Derain, Jean-Pierre, 2011. "A methodology of alarm filtering using dynamic fault tree," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 257-266.
    18. Liu, Yaning & Yousuff Hussaini, M. & Ökten, Giray, 2016. "Accurate construction of high dimensional model representation with applications to uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 281-295.
    19. Keshtegar, Behrooz & Kisi, Ozgur, 2018. "RM5Tree: Radial basis M5 model tree for accurate structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 49-61.
    20. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:7:p:716-728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.