IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v213y2021ics0951832021002052.html
   My bibliography  Save this article

Dynamic Reliability Assessment of Multi-cracked Structure under Fatigue Loading via Multi-State Physics Model

Author

Listed:
  • Jiang, Shan
  • Li, Yan-Fu

Abstract

The structure strength abruptly decreases due to the propagation of multiple cracks. The crack interaction renders the multiple crack reliability problem being a challenging one. Most of the existing methods cannot fit the whole multiple crack growth process and quantify the crack linkup effects on reliability estimation. To address this problem, we extend the multi-state physics modelling and computation framework to evaluate the dynamic reliability of multi-cracked structure via implementing piecewise deterministic Markov processes (PDMP). The proposed multi-state physics model (MSPM) incorporates the crack propagation state transitions and the Forman model that describes the crack growth rate within the states. For the former, the probability of the linkup of adjacent cracks is calculated to identify the multiple crack systems and define the discrete states of each system. For the latter, the Forman model is employed to calculate the crack growth rate within the states. Therefore, each multiple crack system in the structure can be quantified by PDMP and a Monte Carlo algorithm is presented to evaluate the corresponding dynamic reliability values. Ultimately, the dynamic reliability formulation of the multi-cracked structure is developed. The accuracy of the proposed approach is verified by using the sample data from the literature and simulation example.

Suggested Citation

  • Jiang, Shan & Li, Yan-Fu, 2021. "Dynamic Reliability Assessment of Multi-cracked Structure under Fatigue Loading via Multi-State Physics Model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021002052
    DOI: 10.1016/j.ress.2021.107664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021002052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2018. "Time-variant fatigue reliability assessment of welded joints based on the PHI2 and response surface methods," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 120-130.
    3. Keedy, Elias & Feng, Qianmei, 2012. "A physics-of-failure based reliability and maintenance modeling framework for stent deployment and operation," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 94-101.
    4. Chiquet, Julien & Limnios, Nikolaos, 2008. "A method to compute the transition function of a piecewise deterministic Markov process with application to reliability," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1397-1403, September.
    5. Chiquet, Julien & Eid, Mohamed & Limnios, Nikolaos, 2008. "Modelling and estimating the reliability of stochastic dynamical systems with Markovian switching," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1801-1808.
    6. Gayathri, P. & Umesh, K. & Ganguli, R., 2010. "Effect of matrix cracking and material uncertainty on composite plates," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 716-728.
    7. Rabiei, Masoud & Modarres, Mohammad, 2013. "A recursive Bayesian framework for structural health management using online monitoring and periodic inspections," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 154-164.
    8. Gao, Chunwang & Meeker, William Q. & Mayton, Donna, 2014. "Detecting cracks in aircraft engine fan blades using vibrothermography nondestructive evaluation," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 229-235.
    9. Liu, Yu & Liu, Qinzhen & Xie, Chaoyang & Wei, Fayuan, 2019. "Reliability assessment for multi-state systems with state transition dependency," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 276-288.
    10. Gao, Haifeng & Wang, Anjenq & Zio, Enrico & Bai, Guangchen, 2020. "An integrated reliability approach with improved importance sampling for low-cycle fatigue damage prediction of turbine disks," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    11. Zhaojun Yang & Xiaoxu Li & Chuanhai Chen & Hongxun Zhao & Dingyu Yang & Jinyan Guo & Wei Luo, 2019. "Reliability assessment of the spindle systems with a competing risk model," Journal of Risk and Reliability, , vol. 233(2), pages 226-234, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Wang, Weikai & Chen, Xian, 2023. "Piecewise deterministic Markov process for condition-based imperfect maintenance models," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Gassab, Adel & Sghaier, Rabi Ben & Fathallah, Raouf, 2023. "Fatigue reliability prediction of shape memory alloy parts based on multi-scale high cycle fatigue criterion," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Kim, Wongon & Lee, Guesuk & Son, Hyejeong & Choi, Hyunhee & Youn, Byeng D., 2022. "Estimation of fatigue crack initiation and growth in engineering product development using a digital twin approach," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Liu, Fuxiu & Li, Zhaojun & Liang, Minglang & Zhao, Binjian & Ding, Jiang, 2023. "Prediction method of non-stationary random vibration fatigue reliability of turbine runner blade based on transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Lee, Dooyoul & Kwon, Kybeom, 2023. "Dynamic Bayesian network model for comprehensive risk analysis of fatigue-critical structural details," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Sun, Tianqi & Vatn, Jørn, 2024. "A phase-type maintenance model considering condition-based inspections and maintenance delays," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2020. "Time-variant reliability analysis for industrial robot RV reducer under multiple failure modes using Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    2. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Yaqun, Qi & Ping, Jin & Ruizhi, Li & Sheng, Zhang & Guobiao, Cai, 2020. "Dynamic reliability analysis for the reusable thrust chamber: A multi-failure modes investigation based on coupled thermal-structural analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    7. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    8. Teixeira, Rui & Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan, 2021. "Reliability analysis using a multi-metamodel complement-basis approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Zhang, Xuan-Yi & Lu, Zhao-Hui & Wu, Shi-Yu & Zhao, Yan-Gang, 2021. "An Efficient Method for Time-Variant Reliability including Finite Element Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Gu, Hang-Hang & Wang, Run-Zi & Tang, Min-Jin & Zhang, Xian-Cheng & Tu, Shan-Tung, 2024. "Data-physics-model based fatigue reliability assessment methodology for high-temperature components and its application in steam turbine rotor," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Lin, Yan-Hui & Li, Yan-Fu & Zio, Enrico, 2018. "A comparison between Monte Carlo simulation and finite-volume scheme for reliability assessment of multi-state physics systems," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 1-11.
    14. Yaping Li & Enrico Zio & Ershun Pan, 2021. "An MEWMA-based segmental multivariate hidden Markov model for degradation assessment and prediction," Journal of Risk and Reliability, , vol. 235(5), pages 831-844, October.
    15. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    16. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    17. Dui, Hongyan & Meng, Xueyu & Xiao, Hui & Guo, Jianjun, 2020. "Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    18. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    19. Bae, Suk Joo & Yuan, Tao & Ning, Shuluo & Kuo, Way, 2015. "A Bayesian approach to modeling two-phase degradation using change-point regression," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 66-74.
    20. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021002052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.