IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i1p78-88.html
   My bibliography  Save this article

A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery

Author

Listed:
  • Zio, Enrico
  • Gola, Giulio

Abstract

Malfunctions in machinery are often sources of reduced productivity and increased maintenance costs in various industrial applications. For this reason, machine condition monitoring is being pursued to recognise incipient faults. In this paper, the fault diagnostic problem is tackled within a neuro-fuzzy approach to pattern classification. Besides the primary purpose of a high rate of correct classification, the proposed neuro-fuzzy approach also aims at obtaining an easily interpretable classification model. The efficiency of the approach is verified with respect to a literature problem and then applied to a case of motor bearing fault classification.

Suggested Citation

  • Zio, Enrico & Gola, Giulio, 2009. "A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 78-88.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:1:p:78-88
    DOI: 10.1016/j.ress.2007.03.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183200700138X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2007.03.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Gurmeet & Anil Kumar, T.Ch. & Naikan, V.N.A., 2019. "Efficiency monitoring as a strategy for cost effective maintenance of induction motors for minimizing carbon emission and energy consumption," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 193-201.
    2. Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2021. "An Integrated Data and Knowledge Model Addressing Aleatory and Epistemic Uncertainty for Oil Condition Monitoring," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Gayathri, P. & Umesh, K. & Ganguli, R., 2010. "Effect of matrix cracking and material uncertainty on composite plates," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 716-728.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:1:p:78-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.