IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i2p162-179.html
   My bibliography  Save this article

Design optimization of a safety-instrumented system based on RAMS+C addressing IEC 61508 requirements and diverse redundancy

Author

Listed:
  • Torres-Echeverría, A.C.
  • Martorell, S.
  • Thompson, H.A.

Abstract

This paper presents the design optimization by a multi-objective genetic algorithm of a safety-instrumented system based on RAMS+C measures. This includes optimization of safety and reliability measures plus lifecycle cost. Diverse redundancy is implemented as an option for redundancy allocation, and special attention is paid to its effect on common cause failure and the overall system objectives. The requirements for safety integrity established by the standard IEC 61508 are addressed, as well as the modelling detail required for this purpose. The problem is about reliability and redundancy allocation with diversity for a series–parallel system. The objectives to optimize are the average probability of failure on demand, which represents the system safety integrity, Spurious Trip Rate and Lifecycle Cost. The overall method is illustrated with a practical example from the chemical industry: a safety function against high pressure and temperature for a chemical reactor. In order to implement diversity, each subsystem is given the option of three different technologies, each technology with different reliability and diagnostic coverage characteristics. Finally, the optimization with diversity is compared against optimization without diversity.

Suggested Citation

  • Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Design optimization of a safety-instrumented system based on RAMS+C addressing IEC 61508 requirements and diverse redundancy," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 162-179.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:162-179
    DOI: 10.1016/j.ress.2008.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008000458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Haitao & Yang, Xianhui, 2007. "A simple reliability block diagram method for safety integrity verification," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1267-1273.
    2. A. C. Torres-Echeverria & H. A. Thompson, 2007. "Multi-objective genetic algorithm for optimization of system safety and reliability based on IEC 61508 requirements: A practical approach," Journal of Risk and Reliability, , vol. 221(3), pages 193-205, September.
    3. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    4. Marseguerra, M. & Zio, E. & Martorell, S., 2006. "Basics of genetic algorithms optimization for RAMS applications," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 977-991.
    5. Salazar, Daniel & Rocco, Claudio M. & Galván, Blas J., 2006. "Optimization of constrained multiple-objective reliability problems using evolutionary algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1057-1070.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Jianmin & Li, Honghao & Chi, Yajuan & Zhen, Jia & Xu, Xiangfeng, 2021. "nSIL Evaluation and Sensitivity Study of Diverse Redundant Structure," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    3. Xu, Ming & Chen, Tao & Yang, Xianhui, 2012. "The effect of parameter uncertainty on achieved safety integrity of safety system," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 15-23.
    4. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.
    5. Cai, Baoping & Li, Wenchao & Liu, Yiliu & Shao, Xiaoyan & Zhang, Yanping & Zhao, Yi & Liu, Zengkai & Ji, Renjie & Liu, Yonghong, 2021. "Modeling for evaluation of safety instrumented systems with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Jiangbin Zhao & Shubin Si & Zhiqiang Cai & Ming Su & Wei Wang, 2019. "Multiobjective optimization of reliability–redundancy allocation problems for serial parallel-series systems based on importance measure," Journal of Risk and Reliability, , vol. 233(5), pages 881-897, October.
    7. Mohamed Arezki Mellal & Enrico Zio, 2019. "An adaptive cuckoo optimization algorithm for system design optimization under failure dependencies," Journal of Risk and Reliability, , vol. 233(6), pages 1099-1105, December.
    8. Redutskiy, Yury & Camitz-Leidland, Cecilie M. & Vysochyna, Anastasiia & Anderson, Kristanna T. & Balycheva, Marina, 2021. "Safety systems for the oil and gas industrial facilities: Design, maintenance policy choice, and crew scheduling," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    9. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    10. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2011. "Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 545-563.
    11. Cheraghi, Morteza & Taghipour, Sharareh, 2024. "A mathematical optimization model for determining safety integrity levels in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.
    2. L Podofillini & E Zio, 2008. "Events group risk importance by genetic algorithms," Journal of Risk and Reliability, , vol. 222(3), pages 337-346, September.
    3. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    4. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2009. "Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 218-228.
    5. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    6. Abouei Ardakan, Mostafa & Rezvan, Mohammad Taghi, 2018. "Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 225-238.
    7. Compare, M. & Martini, F. & Zio, E., 2015. "Genetic algorithms for condition-based maintenance optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 611-623.
    8. Khalili-Damghani, Kaveh & Amiri, Maghsoud, 2012. "Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 35-44.
    9. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    10. Okafor, Ekene Gabriel & Sun, You-Chao, 2012. "Multi-objective optimization of a series–parallel system using GPSIA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 61-71.
    11. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    12. Hemant Kumar & Shiv Prasad Yadav, 2019. "Fuzzy rule-based reliability analysis using NSGA-II," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 953-972, October.
    13. Mohammad N. Juybari & Pardis Pourkarim Guilani & Mostafa Abouei Ardakan, 2022. "Bi-objective sequence optimization in reliability problems with a matrix-analytic approach," Annals of Operations Research, Springer, vol. 312(1), pages 275-304, May.
    14. Innal, Fares & Dutuit, Yves & Chebila, Mourad, 2015. "Safety and operational integrity evaluation and design optimization of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 32-50.
    15. Mohamed Arezki Mellal & Enrico Zio, 2019. "An adaptive cuckoo optimization algorithm for system design optimization under failure dependencies," Journal of Risk and Reliability, , vol. 233(6), pages 1099-1105, December.
    16. M. K. Pandey & M. K. Tiwari & M. J. Zuo, 2007. "Interactive enhanced particle swarm optimization: A multi-objective reliability application," Journal of Risk and Reliability, , vol. 221(3), pages 177-191, September.
    17. Mohamed Arezki Mellal & Enrico Zio, 2019. "An adaptive particle swarm optimization method for multi-objective system reliability optimization," Journal of Risk and Reliability, , vol. 233(6), pages 990-1001, December.
    18. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    19. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    20. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:162-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.