IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v221y2007i3p177-191.html
   My bibliography  Save this article

Interactive enhanced particle swarm optimization: A multi-objective reliability application

Author

Listed:
  • M. K. Pandey
  • M. K. Tiwari
  • M. J. Zuo

Abstract

In reliability optimization problems, it is desirable to address different conflicting objectives. This generally includes maximization of system reliability and minimization of cost, weight, and volume. The proposed algorithm of a metaheuristic nature is designed to address multi-objective problems. In the presented algorithm, interaction with a decision maker guides the search towards the preferred solution. A comparison between an existing solution and the newly generated solution substantiates the desirability or fitness of the latter. Further, the utility function expresses the preference information of the decision maker while searching for the best solution. During the development of the algorithm, a new variant of particle swarm optimization (PSO) is proposed and named as ‘enhanced particle swarm optimization’ (EPSO). EPSO considers the difference between the particle's best position and the global best position for efficient search and convergence. The developed algorithm is applied to the reliability optimization problem of a multistage mixed system with four different value functions that are used to simulate the designer's opinion in the solution evaluation process. Results indicate that the algorithm effectively captures the decision maker's preferences for different structures. Superior results in multi-objective reliability problem-solving prove the algorithm's superiority over other approaches.

Suggested Citation

  • M. K. Pandey & M. K. Tiwari & M. J. Zuo, 2007. "Interactive enhanced particle swarm optimization: A multi-objective reliability application," Journal of Risk and Reliability, , vol. 221(3), pages 177-191, September.
  • Handle: RePEc:sae:risrel:v:221:y:2007:i:3:p:177-191
    DOI: 10.1243/1748006XJRR51
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR51
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR51?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Selcen (Pamuk) Phelps & Murat Köksalan, 2003. "An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization," Management Science, INFORMS, vol. 49(12), pages 1726-1738, December.
    2. David W. Coit & Alice E. Smith & David M. Tate, 1996. "Adaptive Penalty Methods for Genetic Optimization of Constrained Combinatorial Problems," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 173-182, May.
    3. Ha, Chunghun & Kuo, Way, 2006. "Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems," European Journal of Operational Research, Elsevier, vol. 171(1), pages 24-38, May.
    4. Marseguerra, M. & Zio, E. & Martorell, S., 2006. "Basics of genetic algorithms optimization for RAMS applications," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 977-991.
    5. Salazar, Daniel & Rocco, Claudio M. & Galván, Blas J., 2006. "Optimization of constrained multiple-objective reliability problems using evolutionary algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1057-1070.
    6. Sakawa, Masatoshi, 1982. "Interactive multiobjective decision making by the sequential proxy optimization technique: SPOT," European Journal of Operational Research, Elsevier, vol. 9(4), pages 386-396, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E Zio & F Di Maio & S Martorell, 2008. "Fusion of artificial neural networks and genetic algorithms for multi-objective system reliability design optimization," Journal of Risk and Reliability, , vol. 222(2), pages 115-126, June.
    2. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2009. "Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 218-228.
    3. Peiravi, Abdossaber & Ardakan, Mostafa Abouei & Zio, Enrico, 2020. "A new Markov-based model for reliability optimization problems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. L Podofillini & E Zio, 2008. "Events group risk importance by genetic algorithms," Journal of Risk and Reliability, , vol. 222(3), pages 337-346, September.
    5. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Design optimization of a safety-instrumented system based on RAMS+C addressing IEC 61508 requirements and diverse redundancy," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 162-179.
    6. Young Woong Park, 2020. "MILP Models for Complex System Reliability Redundancy Allocation with Mixed Components," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 600-619, July.
    7. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    8. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    10. Xian Zhao & Jing Zhang & Xiaoyue Wang, 2019. "Joint optimization of components redundancy, spares inventory and repairmen allocation for a standby series system," Journal of Risk and Reliability, , vol. 233(4), pages 623-638, August.
    11. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    12. M Miman & E Pohl, 2008. "Modelling and analysis of risk and reliability for a contingency logistics supply chain," Journal of Risk and Reliability, , vol. 222(4), pages 477-494, December.
    13. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    14. Mariano Luque & Rafael Caballero & Julian Molina & Francisco Ruiz, 2007. "Equivalent Information for Multiobjective Interactive Procedures," Management Science, INFORMS, vol. 53(1), pages 125-134, January.
    15. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Sinha, Ankur & Korhonen, Pekka & Wallenius, Jyrki & Deb, Kalyanmoy, 2014. "An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls," European Journal of Operational Research, Elsevier, vol. 233(3), pages 674-688.
    17. Seyed Mohsen Mousavi & Najmeh Alikar & Madjid Tavana & Debora Di Caprio, 2019. "An improved particle swarm optimization model for solving homogeneous discounted series-parallel redundancy allocation problems," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1175-1194, March.
    18. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    19. Ouyang, Zhiyuan & Liu, Yu & Ruan, Sheng-Jia & Jiang, Tao, 2019. "An improved particle swarm optimization algorithm for reliability-redundancy allocation problem with mixed redundancy strategy and heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 62-74.
    20. Anil Kr. Aggarwal & Vikram Singh & Sanjeev Kumar, 2017. "Availability analysis and performance optimization of a butter oil production system: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 538-554, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:221:y:2007:i:3:p:177-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.