IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p2944-d1059552.html
   My bibliography  Save this article

Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads

Author

Listed:
  • Weifan Zhong

    (School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430079, China)

  • Lijing Du

    (School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430079, China)

Abstract

Traffic accidents on urban roads are a major cause of death despite the development of traffic safety measures. However, the prediction of casualties in urban road traffic accidents has not been deeply explored in previous research. Effective forecasting methods for the casualties of traffic accidents can improve the manner of traffic accident warnings, further avoiding unnecessary loss. This paper provides a practicable model for traffic forecast problems, in which ten variables, including time characteristics, weather factors, accident types, collision characteristics, and road environment conditions, were selected as independent factors. A mixed-support vector machine (SVM) with a genetic algorithm (GA), sparrow search algorithm (SSA), grey wolf optimizer algorithm (GWO) and particle swarm optimization algorithm (PSO) separately are proposed to predict the casualties of collisions. Grounded on 4285 valid urban road traffic collisions, the computing results show that the SSA-SVM performs effectively in the casualties forecast compared with the GWO-SVM, GA-SVM and PSO-SVM.

Suggested Citation

  • Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2944-:d:1059552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/2944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/2944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhuyuan Li & Tianxu Hao & Run Zheng, 2022. "The Relationship between Transportation Industry Efficiency, Transportation Structure, and Regional Sustainability Development in China: Based on DEA and PVAR Models," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    2. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    3. Chen, Tzu-Ying & Jou, Rong-Chang, 2019. "Using HLM to investigate the relationship between traffic accident risk of private vehicles and public transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 148-161.
    4. Jihong Xiao & Xuehong Zhu & Chuangxia Huang & Xiaoguang Yang & Fenghua Wen & Meirui Zhong, 2019. "A New Approach for Stock Price Analysis and Prediction Based on SSA and SVM," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 287-310, January.
    5. Yuhan Guo & Yu Zhang & Youssef Boulaksil & Ning Tian, 2022. "Multi-dimensional spatiotemporal demand forecasting and service vehicle dispatching for online car-hailing platforms," International Journal of Production Research, Taylor & Francis Journals, vol. 60(6), pages 1832-1853, March.
    6. Plakandaras, Vasilios & Papadimitriou, Theophilos & Gogas, Periklis, 2019. "Forecasting transportation demand for the U.S. market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 195-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiqin Lu & Shuang Li, 2023. "Green Transportation Model in Logistics Considering the Carbon Emissions Costs Based on Improved Grey Wolf Algorithm," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    2. Hairui Wang & Xin Ye & Yuanbo Li & Guifu Zhu, 2023. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Mode Decomposition and Time Series," Sustainability, MDPI, vol. 15(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    2. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    3. J. Octavio Gutierrez-Garcia & Kwang Mong Sim, 2012. "GA-based cloud resource estimation for agent-based execution of bag-of-tasks applications," Information Systems Frontiers, Springer, vol. 14(4), pages 925-951, September.
    4. Yu, Chenyang & Tan, Yuanfang & Zhou, Yu & Zang, Chuanxiang & Tu, Chenglin, 2022. "Can functional urban specialization improve industrial energy efficiency? Empirical evidence from China," Energy, Elsevier, vol. 261(PA).
    5. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    6. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    7. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    8. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    9. Alarcon-Rodriguez, Arturo & Ault, Graham & Galloway, Stuart, 2010. "Multi-objective planning of distributed energy resources: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1353-1366, June.
    10. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
    11. Janssens, Jochen & Van den Bergh, Joos & Sörensen, Kenneth & Cattrysse, Dirk, 2015. "Multi-objective microzone-based vehicle routing for courier companies: From tactical to operational planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 222-231.
    12. H. Liao & Q. Wu, 2013. "Multi-objective optimization by learning automata," Journal of Global Optimization, Springer, vol. 55(2), pages 459-487, February.
    13. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
    14. Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
    15. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    16. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    17. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    18. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    19. Y Xu & R Qu, 2011. "Solving multi-objective multicast routing problems by evolutionary multi-objective simulated annealing algorithms with variable neighbourhoods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 313-325, February.
    20. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Pourfayaz, Fathollah & Hosseinzade, Hadi & Acıkkalp, Emin & Tlili, Iskander & Feidt, Michel, 2016. "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 585-595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2944-:d:1059552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.