IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i6p1099-1105.html
   My bibliography  Save this article

An adaptive cuckoo optimization algorithm for system design optimization under failure dependencies

Author

Listed:
  • Mohamed Arezki Mellal
  • Enrico Zio

Abstract

This article presents an algorithm for optimal redundancy and repair team allocation with respect to minimum system cost and a system availability constraint. Four scenarios are considered for the failures occurring in the subsystems of the system: independence, linear dependence, weak dependence, and strong dependence. An adaptive cuckoo optimization algorithm is developed for solving the nonlinear integer optimization problem of allocation. A series–parallel system with six subsystems is considered as a case study for demonstration purposes. The results obtained highlight the good performance of the developed algorithm.

Suggested Citation

  • Mohamed Arezki Mellal & Enrico Zio, 2019. "An adaptive cuckoo optimization algorithm for system design optimization under failure dependencies," Journal of Risk and Reliability, , vol. 233(6), pages 1099-1105, December.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:6:p:1099-1105
    DOI: 10.1177/1748006X19863639
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X19863639
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X19863639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Design optimization of a safety-instrumented system based on RAMS+C addressing IEC 61508 requirements and diverse redundancy," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 162-179.
    2. Mellal, Mohamed Arezki & Zio, Enrico, 2016. "A penalty guided stochastic fractal search approach for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 213-227.
    3. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    4. Huang, Chia-Ling, 2015. "A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 221-230.
    5. Habchi, Georges & Barthod, Christine, 2016. "An overall methodology for reliability prediction of mechatronic systems design with industrial application," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 236-254.
    6. Yu, Haiyang & Chu, Chengbin & Châtelet, Ėric & Yalaoui, Farouk, 2007. "Reliability optimization of a redundant system with failure dependencies," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1627-1634.
    7. K.C. Siju & M. Kumar, 2016. "System reliability estimation and cost analysis of series-parallel systems in the presence of repair dependence function," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 10(1), pages 48-71.
    8. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    9. Mellal, Mohamed Arezki & Williams, Edward J., 2015. "Cuckoo optimization algorithm with penalty function for combined heat and power economic dispatch problem," Energy, Elsevier, vol. 93(P2), pages 1711-1718.
    10. Mohamed Arezki Mellal & Edward J. Williams, 2016. "Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopoe heuristic," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 927-942, October.
    11. Dao, Cuong D. & Zuo, Ming J. & Pandey, Mayank, 2014. "Selective maintenance for multi-state series–parallel systems under economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 240-249.
    12. Marseguerra, M. & Zio, E. & Martorell, S., 2006. "Basics of genetic algorithms optimization for RAMS applications," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 977-991.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Arezki Mellal & Enrico Zio, 2019. "An adaptive particle swarm optimization method for multi-objective system reliability optimization," Journal of Risk and Reliability, , vol. 233(6), pages 990-1001, December.
    2. Mellal, Mohamed Arezki & Zio, Enrico, 2020. "System reliability-redundancy optimization with cold-standby strategy by an enhanced nest cuckoo optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. Mellal, Mohamed Arezki & Al-Dahidi, Sameer & Williams, Edward J., 2020. "System reliability optimization with heterogeneous components using hosted cuckoo optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. Feizabadi, Mohammad & Jahromi, Abdolhamid Eshraghniaye, 2017. "A new model for reliability optimization of series-parallel systems with non-homogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 101-112.
    5. Nath, Rahul & Muhuri, Pranab K., 2022. "Evolutionary Optimization based Solution approaches for Many Objective Reliability-Redundancy Allocation Problem," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.
    7. Jiangbin Zhao & Shubin Si & Zhiqiang Cai & Ming Su & Wei Wang, 2019. "Multiobjective optimization of reliability–redundancy allocation problems for serial parallel-series systems based on importance measure," Journal of Risk and Reliability, , vol. 233(5), pages 881-897, October.
    8. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    9. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    11. L Podofillini & E Zio, 2008. "Events group risk importance by genetic algorithms," Journal of Risk and Reliability, , vol. 222(3), pages 337-346, September.
    12. Guilani, Pedram Pourkarim & Azimi, Parham & Niaki, S.T.A. & Niaki, Seyed Armin Akhavan, 2016. "Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 187-196.
    13. Anil Kr. Aggarwal & Vikram Singh & Sanjeev Kumar, 2017. "Availability analysis and performance optimization of a butter oil production system: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 538-554, January.
    14. Okafor, Ekene Gabriel & Sun, You-Chao, 2012. "Multi-objective optimization of a series–parallel system using GPSIA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 61-71.
    15. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    16. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    17. Yeh, Wei-Chang & Zhu, Wenbo & Tan, Shi-Yi & Wang, Gai-Ge & Yeh, Yuan-Hui, 2022. "Novel general active reliability redundancy allocation problems and algorithm," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    18. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
    19. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    20. Zhang, Zixuan & Yang, Lin & Xu, Youwei & Zhu, Ran & Cao, Yining, 2023. "A novel reliability redundancy allocation problem formulation for complex systems," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:6:p:1099-1105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.