IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006628.html
   My bibliography  Save this article

Traffic advisory for ship encounter situation based on linear dynamic system

Author

Listed:
  • Sui, Zhongyi
  • Wang, Shuaian

Abstract

Enhancing Situation Awareness (SA) is crucial for maritime traffic safety. Various indicators have been developed to assess risks in encounter situations and support the SA of Vessel Traffic Service Operators (VTSOs) and Officers on Watch (OOW), including collision risk and traffic complexity. Despite the widespread use of these navigational aids, ship collision incidents have not been effectively reduced. This paper abstracts ship encounter situations as linear dynamic systems to enhance the understanding of traffic situations. A traffic advisory framework based on the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) is proposed by integrating complexity metrics with risk indicators. The proposed method is validated through simulations of head-on, overtaking, and crossing scenarios, demonstrating its ability to accurately assess encounter complexity and issue advisories for free navigation, complexity, and resolution. Finally, we discuss the practical application of the proposed method through real-world experiments conducted in the waters of Qiongzhou Strait. The results indicate that the proposed method effectively quantifies the complexity of ship encounter situations and identifies high-collision-risk vessels from a microscopic perspective while providing insights into maritime traffic surveillance from a macro perspective.

Suggested Citation

  • Sui, Zhongyi & Wang, Shuaian, 2025. "Traffic advisory for ship encounter situation based on linear dynamic system," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006628
    DOI: 10.1016/j.ress.2024.110591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.