IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006203.html
   My bibliography  Save this article

Digital twin-enhanced opportunistic maintenance of smart microgrids based on the risk importance measure

Author

Listed:
  • Dui, Hongyan
  • Zhang, Songru
  • Dong, Xinghui
  • Wu, Shaomin

Abstract

Smart microgrids face more diverse and frequent risks than traditional grids due to their complexity and reliance on distributed generation. Ensuring the reliable operation of smart microgrids requires effective maintenance. Traditional maintenance methods, based on periodic inspections and fault diagnosis, struggle to adapt to the dynamics and complexity of microgrid systems. The introduction of digital twin technology provides a new solution for the opportunistic maintenance of microgrid systems. This paper presents a digital twin microgrid architecture for real-time monitoring and decision-making in opportunistic maintenance. Meanwhile, this paper introduces a risk importance measure to aid to optimize opportunistic maintenance strategies when resources are limited. Finally, a wind-solar-storage microgrid is used to illustrate the proposed method. Experimental results show that the proposed method significantly reduces maintenance costs and improves system reliability, effectively supporting microgrid maintenance.

Suggested Citation

  • Dui, Hongyan & Zhang, Songru & Dong, Xinghui & Wu, Shaomin, 2025. "Digital twin-enhanced opportunistic maintenance of smart microgrids based on the risk importance measure," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006203
    DOI: 10.1016/j.ress.2024.110548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Optimal multiple replacement and maintenance scheduling in two-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Zhu, Haitao & Lin, Botao, 2024. "Digital twin-driven energy consumption management of integrated heat pipe cooling system for a data center," Applied Energy, Elsevier, vol. 373(C).
    3. Abbasizadeh, Ali & Azad-Farsani, Ehsan, 2024. "Cyber-constrained load shedding for smart grid resilience enhancement," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Zhang, Chao & Chen, Rentong & Wang, Shaoping & Dui, Hongyan & Zhang, Yadong, 2022. "Resilience efficiency importance measure for the selection of a component maintenance strategy to improve system performance recovery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Dui, Hongyan & Zhang, Hao & Wu, Shaomin, 2023. "Optimisation of maintenance policies for a deteriorating multi-component system under external shocks," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    6. Arafat, M.Y. & Hossain, M.J. & Alam, Md Morshed, 2024. "Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    7. Fallahi, F. & Bakir, I. & Yildirim, M. & Ye, Z., 2022. "A chance-constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Firouzi, Mohsen & Samimi, Abouzar & Salami, Abolfazl, 2022. "Reliability evaluation of a composite power system in the presence of renewable generations," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Dui, Hongyan & Wei, Xuan & Xing, Liudong, 2023. "A new multi-criteria importance measure and its applications to risk reduction and safety enhancement," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Li, Haibao & Cai, Zhiqiang & Zhang, Shuai & Zhao, Jiangbin & Si, Shubin, 2024. "Time series importance measure-based reliability optimization for cellular manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Dui, Hongyan & Zhang, Yulu & Bai, Guanghan, 2024. "Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Zhao, Yixin & Cozzani, Valerio & Sun, Tianqi & Vatn, Jørn & Liu, Yiliu, 2023. "Condition-based maintenance for a multi-component system subject to heterogeneous failure dependences," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    13. Xing, Liudong & Levitin, Gregory, 2018. "Connectivity modeling and optimization of linear consecutively connected systems with repairable connecting elements," European Journal of Operational Research, Elsevier, vol. 264(2), pages 732-741.
    14. Zio, Enrico & Miqueles, Leonardo, 2024. "Digital twins in safety analysis, risk assessment and emergency management," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    15. Chen, Liwei & Gao, Yansan & Dui, Hongyan & Xing, Liudong, 2021. "Importance measure-based maintenance optimization strategy for pod slewing system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Dui, Hongyan & Wu, Shaomin & Zhao, Jiangbin, 2021. "Some extensions of the component maintenance priority," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyan Dui & Yulu Zhang & Yun-An Zhang, 2023. "Grouping Maintenance Policy for Improving Reliability of Wind Turbine Systems Considering Variable Cost," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    2. Dui, Hongyan & Wang, Xinyue & Dong, Xinghui & Zhu, Tianmeng & Zhai, Yunkai, 2024. "Reliability model and emergency maintenance strategies for smart home systems," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Dui, Hongyan & Zhang, Yulu & Bai, Guanghan, 2024. "Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Chen, Liwei & Cheng, Chunchun & Dui, Hongyan & Xing, Liudong, 2022. "Maintenance cost-based importance analysis under different maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Hongyan Dui & Xinyue Wang & Haohao Zhou, 2023. "Redundancy-Based Resilience Optimization of Multi-Component Systems," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    6. Chen, Rentong & Zhang, Chao & Wang, Shaoping & Zio, Enrico & Dui, Hongyan & Zhang, Yadong, 2023. "Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Dui, Hongyan & Wei, Xuan & Xing, Liudong, 2023. "A new multi-criteria importance measure and its applications to risk reduction and safety enhancement," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Liang, Xiaojun & Cui, Lirong & Wang, Ruiting, 2024. "Non-renewable warranty cost analysis for dependent series configuration with distinct warranty periods," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    10. Chen, Zhiwei & Zhang, Hao & Wang, Xinyue & Yang, Jinling & Dui, Hongyan, 2024. "Reliability analysis and redundancy design of satellite communication system based on a novel Bayesian environmental importance," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Tao, Haohan & Jia, Peng & Wang, Xiangyu & Wang, Liquan, 2024. "Reliability analysis of subsea control module based on dynamic Bayesian network and digital twin," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    12. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2023. "Determination of the Optimal Level of Reactive Power Compensation That Minimizes the Costs of Losses in Distribution Networks," Energies, MDPI, vol. 17(1), pages 1-24, December.
    13. Zhu, Mixin & Zhou, Xiaojun, 2024. "Maintenance modeling of serial-parallel multi-station manufacturing system with failure-induced damage and assembly parts," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    14. Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Wu, Shengna & Yang, Jun & Peng, Rui & Zhai, Qingqing, 2021. "Optimal design of facility allocation and maintenance strategy for a cellular network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    16. Zhang, Chengjie & Qi, Faqun & Zhang, Ning & Li, Yong & Huang, Hongzhong, 2022. "Maintenance policy optimization for multi-component systems considering dynamic importance of components," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Li, Jiahui & Qi, Xiaogang & He, Yi & Liu, Lifang, 2024. "SDN candidate and protection path selection for link failure protection in hybrid SDNs," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    18. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Resilience Measure of Network Systems by Node and Edge Indicators," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    19. Pedro Nunes & Eugénio Rocha & José Santos, 2024. "Adaptive Framework for Maintenance Scheduling Based on Dynamic Preventive Intervals and Remaining Useful Life Estimation," Future Internet, MDPI, vol. 16(6), pages 1-17, June.
    20. Zhang, Jingru & Fang, Zhigeng & Dong, Wenjie & Liu, Sifeng & Chen, Ding, 2024. "A mission success probability assessment framework for phased-mission-systems using extended graphical evaluation and review technique," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.