IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics0951832022005002.html
   My bibliography  Save this article

Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network

Author

Listed:
  • Chen, Rentong
  • Zhang, Chao
  • Wang, Shaoping
  • Zio, Enrico
  • Dui, Hongyan
  • Zhang, Yadong

Abstract

In order to identify the vulnerable components and ensure the required reliability of mechatronics systems, importance measures of critical components are crucially used in the early design of systems. However, complex mechatronics systems have the properties of hierarchy, nonlinearity, dependency, uncertainty, and randomness, which make it difficult to analyze the coupling failure mechanisms, model the system, estimate its reliability, and complete importance measures of its components. This paper proposes importance measures for components with continuous time degradation. The Wiener process model is used to describe the continuous-time degradation process, and the Copula Hierarchical Bayesian Network (CHBN) is developed for system reliability estimation. Six importance measures are proposed for continuous-time degrading components. These importance measures provide a time-dependent analysis of the criticality of components, thus adding insights on the contributions of the components on the system reliability or performance over time. A case study on the harmonic gear drive is then conducted to demonstrate the use of the proposed importance measures. The results of the study show that the CHBN-based importance measures can be a valuable decision-support tool for designers in the early design of systems.

Suggested Citation

  • Chen, Rentong & Zhang, Chao & Wang, Shaoping & Zio, Enrico & Dui, Hongyan & Zhang, Yadong, 2023. "Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005002
    DOI: 10.1016/j.ress.2022.108883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Optimal multiple replacement and maintenance scheduling in two-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2021. "Optimization of cyclic preventive replacement in homogeneous warm-standby system with reusable elements exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Liu, Bin & Xu, Zhengguo & Xie, Min & Kuo, Way, 2014. "A value-based preventive maintenance policy for multi-component system with continuously degrading components," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 83-89.
    5. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    6. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Lee, Dongjin & Pan, Rong, 2018. "A nonparametric Bayesian network approach to assessing system reliability at early design stages," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 57-66.
    8. Zhang, Chao & Chen, Rentong & Wang, Shaoping & Dui, Hongyan & Zhang, Yadong, 2022. "Resilience efficiency importance measure for the selection of a component maintenance strategy to improve system performance recovery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Ding, Feng & Wang, Yihua & Ma, Guoliang & Zhang, Xinrui, 2021. "Correlation reliability assessment of artillery chassis transmission system based on CBN model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Levitin, Gregory & Ben-Haim, Hanoch, 2008. "Importance of protections against intentional attacks," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 639-646.
    11. Yang, Lechang & Wang, Pidong & Wang, Qiang & Bi, Sifeng & Peng, Rui & Behrensdorf, Jasper & Beer, Michael, 2021. "Reliability analysis of a complex system with hybrid structures and multi-level dependent life metrics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    12. Sun, Yong & Ma, Lin & Mathew, Joseph & Zhang, Sheng, 2006. "An analytical model for interactive failures," Reliability Engineering and System Safety, Elsevier, vol. 91(5), pages 495-504.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Liwei & Cheng, Chunchun & Dui, Hongyan & Xing, Liudong, 2022. "Maintenance cost-based importance analysis under different maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Dui, Hongyan & Wei, Xuan & Xing, Liudong, 2023. "A new multi-criteria importance measure and its applications to risk reduction and safety enhancement," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Hongyan Dui & Yulu Zhang & Yun-An Zhang, 2023. "Grouping Maintenance Policy for Improving Reliability of Wind Turbine Systems Considering Variable Cost," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    7. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2022. "Minimum cost replacement and maintenance scheduling in dual-dissimilar-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Hu, Changhua & Xing, Yuanxing & Du, Dangbo & Si, Xiaosheng & Zhang, Jianxun, 2023. "Remaining useful life estimation for two-phase nonlinear degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Mukhopadhyay, Koushiki & Liu, Bin & Bedford, Tim & Finkelstein, Maxim, 2023. "Remaining lifetime of degrading systems continuously monitored by degrading sensors," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Floreale, Giovanni & Baraldi, Piero & Lu, Xuefei & Rossetti, Paolo & Zio, Enrico, 2024. "Sensitivity analysis by differential importance measure for unsupervised fault diagnostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Hachem, Hassan & Vu, Hai Canh & Fouladirad, Mitra, 2024. "Different methods for RUL prediction considering sensor degradation," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2021. "Joint optimal mission aborting and replacement and maintenance scheduling in dual-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2021. "Influence of storage on mission success probability of m-out-of-n standby systems with reusable elements," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Wei, Yian & Cheng, Yao & Liao, Haitao, 2024. "Optimal resilience-based restoration of a system subject to recurrent dependent hazards," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    16. Li, Yang & Gao, Haifeng & Chen, Hongtian & Liu, Chun & Yang, Zhe & Zio, Enrico, 2024. "Accelerated degradation testing for lifetime analysis considering random effects and the influence of stress and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    17. Dui, Hongyan & Zhang, Yulu & Bai, Guanghan, 2024. "Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Zheng Liu & Xin Liu & Hong-Zhong Huang & Pingyu Zhu & Zhongwei Liang, 2022. "A new inherent reliability modeling and analysis method based on imprecise Dirichlet model for machine tool spindle," Annals of Operations Research, Springer, vol. 311(1), pages 295-310, April.
    19. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.