IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924012236.html
   My bibliography  Save this article

Digital twin-driven energy consumption management of integrated heat pipe cooling system for a data center

Author

Listed:
  • Zhu, Haitao
  • Lin, Botao

Abstract

The energy consumption management (ECM) for the integrated heat pipe cooling (IHPC) systems has become a significant cost-cutting strategy, given the growing demand for the decreased cooling and maintenance costs in data centers. However, the traditional ECM strategies lack an integration with the real-time information and the automatic feedback control, causing the risks of system operation difficult to diagnose and the potential for energy saving hard to exploit. In this respect, a digital twin approach was proposed to efficiently and automatically implement the ECM strategy for an IHPC system. First, a digital twin architecture was established to enable seamless integration and real-time interaction between the physical system and the digital twin. Secondly, the digital twin models of monitoring, simulation, energy evaluation and optimization were developed to drive the corresponding services. Finally, the approach was verified on an IHPC system operating in a real-life data center. It is found that the approach can automatically detect and justify the abnormal states of the IHPC system. Moreover, the approach can reduce the power consumption by 23.63% while meeting the production requirements. The mean relative errors of the supply air temperature and the cooling capacity between the digital twin simulated and the on-site records are 1.43% and 1.46%, respectively. In summary, the proposed approach provides a digital twin workflow that can significantly improve the efficiency of the ECM strategy deployed on an IHPC system.

Suggested Citation

  • Zhu, Haitao & Lin, Botao, 2024. "Digital twin-driven energy consumption management of integrated heat pipe cooling system for a data center," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012236
    DOI: 10.1016/j.apenergy.2024.123840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924012236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Zongwei & Xue, Da & Wei, Haotian & Ji, Qiang & Sun, Xiaoqing & Li, Xiuming, 2021. "Study on operation strategy of evaporative cooling composite air conditioning system in data center," Renewable Energy, Elsevier, vol. 177(C), pages 1147-1160.
    2. Dai, Jun & Das, Diganta & Ohadi, Michael & Pecht, Michael, 2013. "Reliability risk mitigation of free air cooling through prognostics and health management," Applied Energy, Elsevier, vol. 111(C), pages 104-112.
    3. He, Wei & Ding, Su & Zhang, Jifang & Pei, Chenchen & Zhang, Zhiheng & Wang, Yulin & Li, Hailong, 2021. "Performance optimization of server water cooling system based on minimum energy consumption analysis," Applied Energy, Elsevier, vol. 303(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    2. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    3. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    4. Sun, Xiaoqing & Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Zhang, Yiqi & Li, Mengyi & Li, Xiuming & Wang, Qinghai & Wen, Zhenwu & Zheng, Baoli, 2023. "Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers," Energy, Elsevier, vol. 274(C).
    5. Zhang, Xueping & Li, Gui & Han, Zongwei & Yang, Ziwei & Bi, Weiqiang & Li, Xiuming & Yang, Lingyan, 2023. "Study on the influence of buried pipe fault on the operation of ground source heat pump system," Renewable Energy, Elsevier, vol. 210(C), pages 12-25.
    6. Qu, Shengli & Duan, Kaiwen & Guo, Yuxiang & Feng, Yiwei & Wang, Chuang & Xing, Ziwen, 2024. "Real-time optimization of the liquid-cooled data center based on cold plates under different ambient temperatures and thermal loads," Applied Energy, Elsevier, vol. 363(C).
    7. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.
    8. Liu, Pengfei & Kandasamy, Ranjith & Ho, Jin Yao & Wong, Teck Neng & Toh, Kok Chuan, 2023. "Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling," Energy, Elsevier, vol. 269(C).
    9. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    10. Bai, Guangxing & Wang, Pingfeng & Hu, Chao & Pecht, Michael, 2014. "A generic model-free approach for lithium-ion battery health management," Applied Energy, Elsevier, vol. 135(C), pages 247-260.
    11. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    12. Sorrentino, Marco & Acconcia, Matteo & Panagrosso, Davide & Trifirò, Alena, 2016. "Model-based energy monitoring and diagnosis of telecommunication cooling systems," Energy, Elsevier, vol. 116(P1), pages 761-772.
    13. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Zhang, Yu & Liu, Yilin & An, Hui & Jin, Liwen, 2024. "Multi-objective optimization of hollow fiber membrane-based water cooler for enhanced cooling performance and energy efficiency," Renewable Energy, Elsevier, vol. 222(C).
    14. Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
    15. Oró, Eduard & Depoorter, Victor & Garcia, Albert & Salom, Jaume, 2015. "Energy efficiency and renewable energy integration in data centres. Strategies and modelling review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 429-445.
    16. Cho, Jinkyun & Kim, Youngmo, 2021. "Development of modular air containment system: Thermal performance optimization of row-based cooling for high-density data centers," Energy, Elsevier, vol. 231(C).
    17. Dong, Zhe & Li, Bowen & Li, Junyi & Huang, Xiaojin & Zhang, Zuoyi, 2022. "Online reliability assessment of energy systems based on a high-order extended-state-observer with application to nuclear reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2016. "A dynamic prognosis scheme for flexible operation of gas turbines," Applied Energy, Elsevier, vol. 164(C), pages 686-701.
    19. Wang, Huijie & Qiu, Baoyun & Zhao, Fangling & Yan, Tianxu, 2023. "Method for increasing net power of power plant based on operation optimization of circulating cooling water system," Energy, Elsevier, vol. 282(C).
    20. Ng, Selina S.Y. & Xing, Yinjiao & Tsui, Kwok L., 2014. "A naive Bayes model for robust remaining useful life prediction of lithium-ion battery," Applied Energy, Elsevier, vol. 118(C), pages 114-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.