IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832024000048.html
   My bibliography  Save this article

Time series importance measure-based reliability optimization for cellular manufacturing systems

Author

Listed:
  • Li, Haibao
  • Cai, Zhiqiang
  • Zhang, Shuai
  • Zhao, Jiangbin
  • Si, Shubin

Abstract

Cellular manufacturing systems (CMSs) can improve the quality and efficiency of the manufacturing process by multiple processing cells with different functions and group technology. CMSs require high reliability to complete processing missions successively, so reliability optimization is an important part to guarantee system performance. This paper proposes a binary decision diagram-based three-step evaluation method to analyze CMS reliability. A reliability optimization model of CMS is constructed by considering the limited cost to determine the optimal combination of machine degradation parameters. Considering the advantages of ant colony optimization (ACO) and time series importance measure (TIM), a TIM-based ant colony optimization (TIACO) is developed to solve the optimization model. To verify the performance of TIACO, system reliability and running time are introduced to compare with genetic algorithm (GA), ACO, and time series importance measure-based genetic algorithm (TIGA). (1) System reliability obtained by TIACO is always the best. (2) Running time of TIACO is smaller. A case study of an unmanned aerial vehicle manufacturing company verifies the effectiveness of TIACO, and machines with higher TIMs should be given priority to improving their degradation parameters, which provides a new idea for reliability evaluation and optimization of CMSs.

Suggested Citation

  • Li, Haibao & Cai, Zhiqiang & Zhang, Shuai & Zhao, Jiangbin & Si, Shubin, 2024. "Time series importance measure-based reliability optimization for cellular manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000048
    DOI: 10.1016/j.ress.2024.109929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.109929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Fu, Yuqiang & Yuan, Tao & Zhu, Xiaoyan, 2019. "Importance-measure based methods for component reassignment problem of degrading components," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    3. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    4. Cai, Zhiqiang & Si, Shubin & Sun, Shudong & Li, Caitao, 2016. "Optimization of linear consecutive-k-out-of-n system with a Birnbaum importance-based genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 248-258.
    5. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang & Guo, Peng & Zhu, Wenjin, 2020. "Mission success probability optimization for phased-mission systems with repairable component modules," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Yeh, Wei-Chang, 2019. "A novel boundary swarm optimization method for reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    7. Guilani, Pardis Pourkarim & Ardakan, Mostafa Abouei & Dobani, Ehsan Ramezani, 2022. "Optimal component sequence in heterogeneous 1-out-of-N mixed RRAPs," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Li, Xiang-Yu & Li, Xiaopeng & Feng, Jianxiang & Li, Congming & Xiong, Xiaoyan & Huang, Hong-Zhong, 2023. "Reliability analysis and optimization of multi-phased spaceflight with backup missions and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng & Xiong, Xiaoyan, 2021. "A Markov regenerative process model for phased mission systems under internal degradation and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Ye, Zhenggeng & Yang, Hui & Cai, Zhiqiang & Si, Shubin & Zhou, Fuli, 2021. "Performance evaluation of serial-parallel manufacturing systems based on the impact of heterogeneous feedstocks on machine degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    12. Liu, Mingli & Wang, Dan & Si, Shubin, 2023. "Mixed reliability importance-based solving algorithm design for the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    13. Dobani, Ehsan Ramezani & Ardakan, Mostafa Abouei & Davari-Ardakani, Hamed & Juybari, Mohammad N., 2019. "RRAP-CM: A new reliability-redundancy allocation problem with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Garshasbi, Mohammad Sadeq, 2016. "Fault localization based on combines active and passive measurements in computer networks by ant colony optimization," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 205-212.
    15. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Universal redundancy strategy for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Nath, Rahul & Muhuri, Pranab K., 2022. "Evolutionary Optimization based Solution approaches for Many Objective Reliability-Redundancy Allocation Problem," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    17. C. Derman & G. J. Lieberman & S. M. Ross, 1974. "Optimal Allocations in the Construction of k-Out-of-n Reliability Systems," Management Science, INFORMS, vol. 21(3), pages 241-250, November.
    18. Zhang, Jinchun & Lv, Hang & Hou, Jinxiu, 2023. "A novel general model for RAP and RRAP optimization of k-out-of-n:G systems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Feng, Jian Rui & Zhao, Mengke & Yu, Guanghui & Zhang, Jiaqing & Lu, Shouxiang, 2023. "Dynamic risk analysis of accidents chain and system protection strategy based on complex network and node structure importance," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chehade, Abdallah & Hassanieh, Wael & Krivtsov, Vasiliy, 2024. "SeqOAE: Deep sequence-to-sequence orthogonal auto-encoder for time-series forecasting under variable population sizes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Chowdury, Md. Abdul Malek & Nath, Rahul & Shukla, Amit K. & Rauniyar, Amit & Muhuri, Pranab K., 2024. "Multi-task optimization in reliability redundancy allocation problem: A multifactorial evolutionary-based approach," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Hsieh, Tsung-Jung, 2023. "A Q-learning guided search for developing a hybrid of mixed redundancy strategies to improve system reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Liu, Mingli & Wang, Dan & Si, Shubin, 2023. "Mixed reliability importance-based solving algorithm design for the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Sun, Qin & Li, Hongxu & Zhong, Yuanfu & Ren, Kezhou & Zhang, Yingchao, 2024. "Deep reinforcement learning-based resilience enhancement strategy of unmanned weapon system-of-systems under inevitable interferences," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Liu, Mingli & Wang, Dan & Zhao, Jiangbin & Si, Shubin, 2022. "Importance measure construction and solving algorithm oriented to the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Yeh, Wei-Chang, 2022. "BAT-based algorithm for finding all Pareto solutions of the series-parallel redundancy allocation problem with mixed components," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Nath, Rahul & Muhuri, Pranab K., 2024. "A novel evolutionary solution approach for many-objective reliability-redundancy allocation problem based on objective prioritization and constraint optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Liu, Mingli & Wang, Dan & Si, Shubin, 2024. "Solving algorithm design for the cost minimization reliability optimization model driven by a novel cost-based importance measure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Wang, Dan & Si, Shubin & Cai, Zhiqiang & Zhao, Jiangbin, 2021. "Reliability optimization of linear consecutive-k-out-of-n: F systems driven by reconfigurable importance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Nath, Rahul & Muhuri, Pranab K., 2022. "Evolutionary Optimization based Solution approaches for Many Objective Reliability-Redundancy Allocation Problem," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    12. Fu, Yuqiang & Zhu, Xiaoyan & Ma, Xiaoyang, 2020. "Optimum component reallocation and system replacement maintenance for a used system with increasing minimal repair cost," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Hsieh, Tsung-Jung, 2023. "Performance indicator-based multi-objective reliability optimization for multi-type production systems with heterogeneous machines," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Li, Xiang-Yu & Li, Xiaopeng & Feng, Jianxiang & Li, Congming & Xiong, Xiaoyan & Huang, Hong-Zhong, 2023. "Reliability analysis and optimization of multi-phased spaceflight with backup missions and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Guo, Linhan & Li, Ruiyang & Wang, Yu & Yang, Jun & Liu, Yu & Chen, Yiming & Zhang, Jianguo, 2023. "Availability for multi-component k-out-of-n: G warm-standby system in series with shut-off rule of suspended animation," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    16. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    17. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Universal redundancy strategy for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    18. Qiu, Siqi & Ming, Xinguo & Sallak, Mohamed & Lu, Jialiang, 2022. "A Birnbaum importance-based two-stage approach for two-type component assignment problems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    19. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Zhang, Zixuan & Yang, Lin & Xu, Youwei & Zhu, Ran & Cao, Yining, 2023. "A novel reliability redundancy allocation problem formulation for complex systems," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.