IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004745.html
   My bibliography  Save this article

Reliability model and emergency maintenance strategies for smart home systems

Author

Listed:
  • Dui, Hongyan
  • Wang, Xinyue
  • Dong, Xinghui
  • Zhu, Tianmeng
  • Zhai, Yunkai

Abstract

After the smart home system is impacted by malicious attacks or other factors, the system reliability drops drastically, so the user's living environment is greatly disturbed. To determine the emergency maintenance strategy, firstly, we study the failure mechanism of the smart home system by the fault tree theory, and distinguish the components into two types: critical components and non-critical components. Secondly, a recovery prioritization is proposed to measure the extent to which changes in the reliability of each component affect the reliability of the system. Then, three scenarios of smart home system failure are proposed. Under the constraints of time and cost, the maintenance strategies for the three scenarios are determined to achieve emergency recovery. Finally, through the multi-objective particle swarm optimization algorithm, the system reliability is maximized, the maintenance cost is minimized, and the optimal reliability recovery level of each component is obtained, so that the reliability of the smart home system is further improved. The effectiveness and practicality of the emergency maintenance strategies proposed in this paper are demonstrated by a smart home system example.

Suggested Citation

  • Dui, Hongyan & Wang, Xinyue & Dong, Xinghui & Zhu, Tianmeng & Zhai, Yunkai, 2024. "Reliability model and emergency maintenance strategies for smart home systems," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004745
    DOI: 10.1016/j.ress.2024.110402
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Dai, Wei, 2024. "Mission reliability-centered opportunistic maintenance approach for multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Dui, Hongyan & Tian, Tianzi & Wu, Shaomin & Xie, Min, 2023. "A cost-informed component maintenance index and its applications," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Dui, Hongyan & Si, Shubin & Yam, Richard C.M., 2017. "A cost-based integrated importance measure of system components for preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 98-104.
    4. Zhang, Chao & Chen, Rentong & Wang, Shaoping & Dui, Hongyan & Zhang, Yadong, 2022. "Resilience efficiency importance measure for the selection of a component maintenance strategy to improve system performance recovery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Dui, Hongyan & Zhang, Hao & Wu, Shaomin, 2023. "Optimisation of maintenance policies for a deteriorating multi-component system under external shocks," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    6. Dui, Hongyan & Lu, Yaohui & Wu, Shaomin, 2024. "Competing risks-based resilience approach for multi-state systems under multiple shocks," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Zhang, Zhengxin & Li, Huiqin & Li, Tianmei & Zhang, Jianxun & Si, Xiaosheng, 2024. "An optimal condition-based maintenance policy for nonlinear stochastic degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Dui, Hongyan & Zhang, Yulu & Bai, Guanghan, 2024. "Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Rentong Chen & Chao Zhang & Shaoping Wang & Enrico Zio & Hongyan Dui & Yadong Zhang, 2023. "Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network," Post-Print hal-04103914, HAL.
    10. Liu, Mingli & Wang, Dan & Zhao, Jiangbin & Si, Shubin, 2022. "Importance measure construction and solving algorithm oriented to the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Wang, Chaonan & Liu, Qiongyang & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2022. "Reliability analysis of smart home sensor systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Zhang, Fengxia & Liao, Haitao & Shen, Jingyuan & Ma, Yizhong, 2024. "Optimal maintenance over a finite time horizon for a system under imperfect inspection and dynamic working environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    13. Xing, Liudong & Amari, Suprasad V. & Wang, Chaonan, 2012. "Reliability of k-out-of-n systems with phased-mission requirements and imperfect fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 45-50.
    14. Luo, Yi & Zhao, Xiujie & Liu, Bin & He, Shuguang, 2024. "Condition-based maintenance policy for systems under dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    15. Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2022. "Minimum cost replacement and maintenance scheduling in dual-dissimilar-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Lu, Yaohui & Wang, Shaoping & Zhang, Chao & Chen, Rentong & Dui, Hongyan & Mu, Rui, 2024. "Adaptive maintenance window-based opportunistic maintenance optimization considering operational reliability and cost," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Liu, Mingli & Wang, Dan & Si, Shubin, 2024. "Solving algorithm design for the cost minimization reliability optimization model driven by a novel cost-based importance measure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Zhang, Jingru & Fang, Zhigeng & Dong, Wenjie & Liu, Sifeng & Chen, Ding, 2024. "A mission success probability assessment framework for phased-mission-systems using extended graphical evaluation and review technique," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    5. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2024. "Resilience evaluation of train control on-board system considering common cause failure: Based on a beta-factor and continuous-time bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    6. Dui, Hongyan & Wei, Xuan & Xing, Liudong, 2023. "A new multi-criteria importance measure and its applications to risk reduction and safety enhancement," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Liang, Xiaojun & Cui, Lirong & Wang, Ruiting, 2024. "Non-renewable warranty cost analysis for dependent series configuration with distinct warranty periods," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Zhou, Yu & Zheng, Ran, 2024. "Capacity-based daily maintenance optimization of urban bus with multi-objective failure priority ranking," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Cao, Yingsai & Lu, Chen & Dong, Wenjie, 2024. "Importance measures for multi-state systems with multiple components under hierarchical dependences," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    10. Chen, Zhiwei & Zhang, Hao & Wang, Xinyue & Yang, Jinling & Dui, Hongyan, 2024. "Reliability analysis and redundancy design of satellite communication system based on a novel Bayesian environmental importance," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Dui, Hongyan & Zhang, Yulu & Bai, Guanghan, 2024. "Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Cai, Zhiqiang & Si, Shubin & Sun, Shudong & Li, Caitao, 2016. "Optimization of linear consecutive-k-out-of-n system with a Birnbaum importance-based genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 248-258.
    15. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.
    16. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
    17. Peng, Rui & Mo, Huadong & Xie, Min & Levitin, Gregory, 2013. "Optimal structure of multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 18-25.
    18. Dui, Hongyan & Lu, Yaohui & Chen, Liwei, 2024. "Importance-based system cost management and failure risk analysis for different phases in life cycle," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Xiaofeng Wang & Shu Guo & Jian Shen & Yang Liu, 2020. "Optimization of preventive maintenance for series manufacturing system by differential evolution algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 745-757, March.
    20. Lyu, Dong & Si, Shubin, 2021. "Importance measure for K-out-of-n: G systems under dynamic random load considering strength degradation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.