IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53387-y.html
   My bibliography  Save this article

LLM-driven multimodal target volume contouring in radiation oncology

Author

Listed:
  • Yujin Oh

    (Massachusetts General Hospital (MGH) and Harvard Medical School)

  • Sangjoon Park

    (Yonsei University College of Medicine
    Yonsei University)

  • Hwa Kyung Byun

    (Yongin Severance Hospital)

  • Yeona Cho

    (Gangnam Severance Hospital)

  • Ik Jae Lee

    (Yonsei University College of Medicine)

  • Jin Sung Kim

    (Yonsei University College of Medicine
    Oncosoft Inc.)

  • Jong Chul Ye

    (Korea Advanced Institute of Science and Technology (KAIST))

Abstract

Target volume contouring for radiation therapy is considered significantly more challenging than the normal organ segmentation tasks as it necessitates the utilization of both image and text-based clinical information. Inspired by the recent advancement of large language models (LLMs) that can facilitate the integration of the textural information and images, here we present an LLM-driven multimodal artificial intelligence (AI), namely LLMSeg, that utilizes the clinical information and is applicable to the challenging task of 3-dimensional context-aware target volume delineation for radiation oncology. We validate our proposed LLMSeg within the context of breast cancer radiotherapy using external validation and data-insufficient environments, which attributes highly conducive to real-world applications. We demonstrate that the proposed multimodal LLMSeg exhibits markedly improved performance compared to conventional unimodal AI models, particularly exhibiting robust generalization performance and data-efficiency.

Suggested Citation

  • Yujin Oh & Sangjoon Park & Hwa Kyung Byun & Yeona Cho & Ik Jae Lee & Jin Sung Kim & Jong Chul Ye, 2024. "LLM-driven multimodal target volume contouring in radiation oncology," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53387-y
    DOI: 10.1038/s41467-024-53387-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53387-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53387-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Moor & Oishi Banerjee & Zahra Shakeri Hossein Abad & Harlan M. Krumholz & Jure Leskovec & Eric J. Topol & Pranav Rajpurkar, 2023. "Foundation models for generalist medical artificial intelligence," Nature, Nature, vol. 616(7956), pages 259-265, April.
    2. Karan Singhal & Shekoofeh Azizi & Tao Tu & S. Sara Mahdavi & Jason Wei & Hyung Won Chung & Nathan Scales & Ajay Tanwani & Heather Cole-Lewis & Stephen Pfohl & Perry Payne & Martin Seneviratne & Paul G, 2023. "Publisher Correction: Large language models encode clinical knowledge," Nature, Nature, vol. 620(7973), pages 19-19, August.
    3. Feng Shi & Weigang Hu & Jiaojiao Wu & Miaofei Han & Jiazhou Wang & Wei Zhang & Qing Zhou & Jingjie Zhou & Ying Wei & Ying Shao & Yanbo Chen & Yue Yu & Xiaohuan Cao & Yiqiang Zhan & Xiang Sean Zhou & Y, 2022. "Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Karan Singhal & Shekoofeh Azizi & Tao Tu & S. Sara Mahdavi & Jason Wei & Hyung Won Chung & Nathan Scales & Ajay Tanwani & Heather Cole-Lewis & Stephen Pfohl & Perry Payne & Martin Seneviratne & Paul G, 2023. "Large language models encode clinical knowledge," Nature, Nature, vol. 620(7972), pages 172-180, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soroosh Tayebi Arasteh & Tianyu Han & Mahshad Lotfinia & Christiane Kuhl & Jakob Nikolas Kather & Daniel Truhn & Sven Nebelung, 2024. "Large language models streamline automated machine learning for clinical studies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Ching-Nam Hang & Pei-Duo Yu & Roberto Morabito & Chee-Wei Tan, 2024. "Large Language Models Meet Next-Generation Networking Technologies: A Review," Future Internet, MDPI, vol. 16(10), pages 1-29, October.
    3. Hossam A. Gabber & Omar S. Hemied, 2024. "Domain-Specific Large Language Model for Renewable Energy and Hydrogen Deployment Strategies," Energies, MDPI, vol. 17(23), pages 1-25, December.
    4. Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Chen Gao & Xiaochong Lan & Nian Li & Yuan Yuan & Jingtao Ding & Zhilun Zhou & Fengli Xu & Yong Li, 2024. "Large language models empowered agent-based modeling and simulation: a survey and perspectives," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-24, December.
    6. Juexiao Zhou & Xiaonan He & Liyuan Sun & Jiannan Xu & Xiuying Chen & Yuetan Chu & Longxi Zhou & Xingyu Liao & Bin Zhang & Shawn Afvari & Xin Gao, 2024. "Pre-trained multimodal large language model enhances dermatological diagnosis using SkinGPT-4," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Pengcheng Qiu & Chaoyi Wu & Xiaoman Zhang & Weixiong Lin & Haicheng Wang & Ya Zhang & Yanfeng Wang & Weidi Xie, 2024. "Towards building multilingual language model for medicine," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Maksim Makarenko & Arturo Burguete-Lopez & Qizhou Wang & Silvio Giancola & Bernard Ghanem & Luca Passone & Andrea Fratalocchi, 2024. "Hardware-accelerated integrated optoelectronic platform towards real-time high-resolution hyperspectral video understanding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Weijian Huang & Cheng Li & Hong-Yu Zhou & Hao Yang & Jiarun Liu & Yong Liang & Hairong Zheng & Shaoting Zhang & Shanshan Wang, 2024. "Enhancing representation in radiography-reports foundation model: a granular alignment algorithm using masked contrastive learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53387-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.