IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v229y2023ics0951832022004823.html
   My bibliography  Save this article

An uncertainty-informed framework for trustworthy fault diagnosis in safety-critical applications

Author

Listed:
  • Zhou, Taotao
  • Zhang, Laibin
  • Han, Te
  • Droguett, Enrique Lopez
  • Mosleh, Ali
  • Chan, Felix T.S.

Abstract

Deep learning-based models, while highly effective for prognostics and health management, fail to reliably detect the data unknown in the training stage, referred to as out-of-distribution (OOD) data. This restricts their use in safety-critical assets, where unknowns may impose significant risks and cause serious consequences. To address this issue, we propose to leverage predictive uncertainty as a sign of trustworthiness that aids decision-makers in comprehending fault diagnostic results. A novel probabilistic Bayesian convolutional neural network (PBCNN) is presented to quantify predictive uncertainty instead of deterministic deep learning, so as to develop a trustworthy fault diagnosis framework. Then, a predictive risk-aware strategy is proposed to guide the fault diagnosis model to make predictions within tolerable risk limits and otherwise to request the assistance of human experts. The proposed method is capable of not only achieving accurate results, but also improving the trustworthiness of deep learning-based fault diagnosis in safety-critical applications. The proposed framework is demonstrated by fault diagnosis of bearings using three types of OOD data. The results show that the proposed framework has high accuracy in handling a mix of irrelevant data, and also maintains good performance when dealing with a mix of sensor faults and unknown faults, respectively.

Suggested Citation

  • Zhou, Taotao & Zhang, Laibin & Han, Te & Droguett, Enrique Lopez & Mosleh, Ali & Chan, Felix T.S., 2023. "An uncertainty-informed framework for trustworthy fault diagnosis in safety-critical applications," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004823
    DOI: 10.1016/j.ress.2022.108865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Xia, Min & Shao, Haidong & Williams, Darren & Lu, Siliang & Shu, Lei & de Silva, Clarence W., 2021. "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Ding, Chugang & Chen, Ke & Kou, Lei, 2022. "Predicting wind-caused floater intrusion risk for overhead contact lines based on Bayesian neural network with spatiotemporal correlation analysis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Nguyen, Khanh T.P. & Medjaher, Kamal & Gogu, Christian, 2022. "Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Minhee Kim & Kaibo Liu, 2020. "A Bayesian deep learning framework for interval estimation of remaining useful life in complex systems by incorporating general degradation characteristics," IISE Transactions, Taylor & Francis Journals, vol. 53(3), pages 326-340, December.
    8. da Costa, Paulo Roberto de Oliveira & Akçay, Alp & Zhang, Yingqian & Kaymak, Uzay, 2020. "Remaining useful lifetime prediction via deep domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Floreale, Giovanni & Baraldi, Piero & Lu, Xuefei & Rossetti, Paolo & Zio, Enrico, 2024. "Sensitivity analysis by differential importance measure for unsupervised fault diagnostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Li, Jimeng & Mao, Weilin & Yang, Bixin & Meng, Zong & Tong, Kai & Yu, Shancheng, 2024. "RUL prediction of rolling bearings across working conditions based on multi-scale convolutional parallel memory domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Gao, Dawei & Huang, Kai & Zhu, Yongsheng & Zhu, Linbo & Yan, Ke & Ren, Zhijun & Guedes Soares, C., 2024. "Semi-supervised small sample fault diagnosis under a wide range of speed variation conditions based on uncertainty analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Huang, Keke & Tao, Shijun & Wu, Dehao & Yang, Chunhua & Gui, Weihua, 2024. "Robust condition identification against label noise in industrial processes based on trusted connection dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tohme, Tony & Vanslette, Kevin & Youcef-Toumi, Kamal, 2023. "Reliable neural networks for regression uncertainty estimation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Wang, Jian & Gao, Shibin & Yu, Long & Liu, Xingyang & Neri, Ferrante & Zhang, Dongkai & Kou, Lei, 2024. "Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Gjorgiev, Blazhe & Das, Laya & Merkel, Seline & Rohrer, Martina & Auger, Etienne & Sansavini, Giovanni, 2023. "Simulation-driven deep learning for locating faulty insulators in a power line," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Ma, Chenyang & Li, Yongbo & Wang, Xianzhi & Cai, Zhiqiang, 2023. "Early fault diagnosis of rotating machinery based on composite zoom permutation entropy," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Xie, Chenlin & Chen, Ke & Kou, Lei, 2023. "Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Wang, Yilin & Li, Yuanxiang & Zhang, Yuxuan & Lei, Jia & Yu, Yifei & Zhang, Tongtong & Yang, Yongshen & Zhao, Honghua, 2024. "Incorporating prior knowledge into self-supervised representation learning for long PHM signal," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Huang, Zhifu & Yang, Yang & Hu, Yawei & Ding, Xiang & Li, Xuanlin & Liu, Yongbin, 2023. "Attention-augmented recalibrated and compensatory network for machine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Floreale, Giovanni & Baraldi, Piero & Lu, Xuefei & Rossetti, Paolo & Zio, Enrico, 2024. "Sensitivity analysis by differential importance measure for unsupervised fault diagnostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Aizpurua, J.I. & Stewart, B.G. & McArthur, S.D.J. & Penalba, M. & Barrenetxea, M. & Muxika, E. & Ringwood, J.V., 2022. "Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty: A transformer case study," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. Ma, Zhonghai & Liao, Haitao & Gao, Jianhang & Nie, Songlin & Geng, Yugang, 2023. "Physics-Informed Machine Learning for Degradation Modeling of an Electro-Hydrostatic Actuator System," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Xue, Gang & Liu, Shifeng & Ren, Long & Gong, Daqing, 2024. "Risk assessment of utility tunnels through risk interaction-based deep learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Wang, Jian & Liu, Huiyuan & Gao, Shibin & Yu, Long & Liu, Xingyang & Zhang, Dongkai & Kou, Lei, 2024. "Robust deep Gaussian process-based trustworthy fog-haze-caused pollution flashover prediction approach for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.