IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics0951832022004744.html
   My bibliography  Save this article

Controlled generation of unseen faults for Partial and Open-Partial domain adaptation

Author

Listed:
  • Rombach, Katharina
  • Michau, Gabriel
  • Fink, Olga

Abstract

New operating conditions can result in a significant performance drop of fault diagnostics models due to the domain shift between the training and the testing data distributions. While several domain adaptation approaches have been proposed to overcome such domain shifts, their application is limited if the fault classes represented in the two domains are not the same. To enable a better transferability between two different domains, particularly in setups where only the healthy data class is shared between the two domains, we propose a new framework for Partial and Open-Partial domain adaptation based on generating distinct fault signatures with a Wasserstein GAN. The main contribution of the proposed framework is the controlled data generation with two characteristics. Firstly, previously unobserved target faults can be generated by having only access to healthy target and faulty source samples. Secondly, distinct fault types and severity levels can be generated precisely. The proposed method is especially suited for extreme domain adaption settings that are particularly relevant in the context of complex and safety-critical systems, where only one class is shared between the two domains. We evaluate the proposed framework on Partial as well as Open-Partial domain adaptation tasks on two bearing fault diagnostics case studies. In the evaluated case studies the proposed methodology demonstrated superior results compared to other methods, particularly in the presence of large domain gaps. The experiments conducted in different label space settings (Partial and Open-Partial) showcase the versatility of the proposed framework.

Suggested Citation

  • Rombach, Katharina & Michau, Gabriel & Fink, Olga, 2023. "Controlled generation of unseen faults for Partial and Open-Partial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022004744
    DOI: 10.1016/j.ress.2022.108857
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Minqiang & Deng, Aidong & Shi, Yaowei & Liu, Yang & Xu, Meng, 2022. "A novel sub-label learning mechanism for enhanced cross-domain fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Zhao, Chao & Shen, Weiming, 2022. "Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Zhao, Chao & Shen, Weiming, 2022. "Dual adversarial network for cross-domain open set fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Lee, Jinwook & Kim, Myungyon & Ko, Jin Uk & Jung, Joon Ha & Sun, Kyung Ho & Youn, Byeng D., 2022. "Asymmetric inter-intra domain alignments (AIIDA) method for intelligent fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    6. Jia Luo & Jinying Huang & Hongmei Li, 2021. "A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 407-425, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nejjar, Ismail & Geissmann, Fabian & Zhao, Mengjie & Taal, Cees & Fink, Olga, 2024. "Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xiaolei & Zhao, Zhibin & Zhang, Xingwu & Chen, Xuefeng & Cai, Jianbing, 2023. "Statistical identification guided open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Zhao, Chao & Shen, Weiming, 2022. "Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Zhang, Xingwu & Zhao, Yu & Yu, Xiaolei & Ma, Rui & Wang, Chenxi & Chen, Xuefeng, 2023. "Weighted domain separation based open set fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Zhao, Zeyun & Wang, Jia & Tao, Qian & Li, Andong & Chen, Yiyang, 2024. "An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Chen, Pengfei & Zhao, Rongzhen & He, Tianjing & Wei, Kongyuan & Yuan, Jianhui, 2023. "A novel bearing fault diagnosis method based joint attention adversarial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    10. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Bian, Wenbin, 2023. "Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Ma, Chenyang & Wang, Xianzhi & Li, Yongbo & Cai, Zhiqiang, 2024. "Broad zero-shot diagnosis for rotating machinery with untrained compound faults," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Wang, Jianyu & Zeng, Zhiguo & Zhang, Heng & Barros, Anne & Miao, Qiang, 2022. "An hybrid domain adaptation diagnostic network guided by curriculum pseudo labels for electro-mechanical actuator," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Wang, Jian & Gao, Shibin & Yu, Long & Liu, Xingyang & Neri, Ferrante & Zhang, Dongkai & Kou, Lei, 2024. "Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    18. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    19. Guo, Jianchun & Si, Zetian & Liu, Yi & Li, Jiahao & Li, Yanting & Xiang, Jiawei, 2022. "Dynamic time warping using graph similarity guided symplectic geometry mode decomposition to detect bearing faults," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    20. Zhang, Wei & Wang, Ziwei & Li, Xiang, 2023. "Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022004744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.