IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v236y2023ics0951832023001060.html
   My bibliography  Save this article

Connectivity probability evaluation of a large-scale highway bridge network using network decomposition

Author

Listed:
  • Li, Shunlong
  • Wang, Jie
  • He, Shaoyang

Abstract

The existing NP-hard problem makes it difficult to evaluate the connectivity probability of large-scale networks, causing great barriers to evaluating and ensuring network safety. In this study, the connectivity probability for a highway bridge network composed of 1772 bridges is evaluated using network decomposition. First, the multilevel k-way graph partition is employed recursively to decompose the network into several approximately equally-sized subnetworks and minimum edge-cuts in series. Then, the decomposed network connectivity probability could be achieved in two steps: subnet and simplified network evaluations. In the subnet evaluation step, the subnet states with and without edge-cuts are judged respectively. Different from the existing connectivity binary definition as connected or disconnected, three states are redefined using adjacent matrices for each subnet: subnet with and without edge-cuts both connected (CCS), both disconnected (DDS), subnet with edge-cuts connected while without edge-cuts disconnected (DCS). For DDS would inevitably lead to the disconnection of the bridge network, such state wouldn't be enumerated in the following step for efficiency, while the CCS and DCS would be further represented by the terminal nodes. In the simplified network evaluation step, the highway bridge network connectivity can be thoroughly represented by treating terminal nodes and edge-cuts as a serial simplified network whose connectivity probability could be calculated by analysing the limited states. The connectivity probability evaluation shows high efficiency and accuracy in the investigated bridge network.

Suggested Citation

  • Li, Shunlong & Wang, Jie & He, Shaoyang, 2023. "Connectivity probability evaluation of a large-scale highway bridge network using network decomposition," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023001060
    DOI: 10.1016/j.ress.2023.109191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023001060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dehghani, Nariman L. & Zamanian, Soroush & Shafieezadeh, Abdollah, 2021. "Adaptive network reliability analysis: Methodology and applications to power grid," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Hong, Liu & Ouyang, Min & Xu, Min & Hu, Peipei, 2020. "Time-varied accessibility and vulnerability analysis of integrated metro and high-speed rail systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2021. "An improved bounding algorithm for approximating multistate network reliability based on state-space decomposition method," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    5. Bai, Guanghan & Tian, Zhigang & Zuo, Ming J., 2016. "An improved algorithm for finding all minimal paths in a network," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 1-10.
    6. Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Hu, Fang & Liu, Yuhua, 2016. "A new algorithm CNM-Centrality of detecting communities based on node centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 138-151.
    9. Yeh, Wei-Chang & Tan, Shi-Yi & Forghani-elahabad, Majid & Khadiri, Mohamed El & Jiang, Yunzhi & Lin, Chen-Shiun, 2022. "New binary-addition tree algorithm for the all-multiterminal binary-state network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Kang, Won-Hee & Song, Junho & Gardoni, Paolo, 2008. "Matrix-based system reliability method and applications to bridge networks," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1584-1593.
    11. Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Pugliese, F. & De Risi, R. & Sarno, L. Di, 2022. "Reliability assessment of existing RC bridges with spatially-variable pitting corrosion subjected to increasing traffic demand," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Orcesi, André D. & Cremona, Christian F., 2010. "A bridge network maintenance framework for Pareto optimization of stakeholders/users costs," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1230-1243.
    14. Gergely Palla & Albert-László Barabási & Tamás Vicsek, 2007. "Quantifying social group evolution," Nature, Nature, vol. 446(7136), pages 664-667, April.
    15. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    16. Cui, Hongjun & Wang, Fei & Ma, Xinwei & Zhu, Minqing, 2022. "A novel fixed-node unconnected subgraph method for calculating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Zhang, Zhenyu & Ji, Tingting & Wei, Hsi-Hsien, 2022. "Dynamic emergency inspection routing and restoration scheduling to enhance the post-earthquake resilience of a highway–bridge network," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    18. Reed, Sean & Löfstrand, Magnus & Andrews, John, 2019. "An efficient algorithm for computing exact system and survival signatures of K-terminal network reliability," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 429-439.
    19. He, Jun, 2021. "An extended recursive decomposition algorithm for dynamic seismic reliability evaluation of lifeline networks with dependent component failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Boakye, Jessica & Guidotti, Roberto & Gardoni, Paolo & Murphy, Colleen, 2022. "The role of transportation infrastructure on the impact of natural hazards on communities," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    21. Silva-Lopez, Rodrigo & Bhattacharjee, Gitanjali & Poulos, Alan & Baker, Jack W., 2022. "Commuter welfare-based probabilistic seismic risk assessment of regional road networks," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Shang, Qingxue & Guo, Xiaodong & Li, Jichao & Wang, Tao, 2022. "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    7. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Zhang, Jianhua & Min, Qinjie & Zhou, Yu & Cheng, Lilai, 2024. "Vulnerability assessments of urban rail transit networks based on extended coupled map lattices with evacuation capability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Nocera, Fabrizio & Contento, Alessandro & Gardoni, Paolo, 2024. "Risk analysis of supply chains: The role of supporting structures and infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Wandelt, Sebastian & Lin, Wei & Sun, Xiaoqian & Zanin, Massimiliano, 2022. "From random failures to targeted attacks in network dismantling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    12. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Wu, Yangyang & Chen, Suren, 2023. "Resilience modeling and pre-hazard mitigation planning of transportation network to support post-earthquake emergency medical response," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Oboudi, Mohammad Hossein & Mohammadi, Mohammad, 2024. "Two-Stage Seismic Resilience Enhancement of Electrical Distribution Systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Wang, Nanxi & Yuen, Kum Fai, 2022. "Resilience assessment of waterway transportation systems: Combining system performance and recovery cost," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining & Xu, Bei, 2022. "Modeling and evaluation method for resilience analysis of multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Wang, Longjian & Zhang, Shuichao & Szűcs, Gábor & Wang, Yonggang, 2024. "Identifying the critical nodes in multi-modal transportation network with a traffic demand-based computational method," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    18. Zhang, Jianhua & Shao, Wenchao & Yang, Liqiang & Zhao, Xun & Liu, Weizhi, 2023. "Robustness assessments of urban rail transit networks based on user equilibrium with time compensation mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    19. Azhdari, Armaghan & Ardakan, Mostafa Abouei & Najafi, Mojtaba, 2023. "An approach for reliability optimization of a multi-state centralized network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Xu, Xiu-Zhen & Niu, Yi-Feng & Song, Yi-Fan, 2021. "Computing the reliability of a stochastic distribution network subject to budget constraint," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023001060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.