IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v249y2024ics0951832024003107.html
   My bibliography  Save this article

A path-based simulation approach for multistate flow network reliability estimation without using boundary points

Author

Listed:
  • Chang, Ping-Chen

Abstract

A multistate flow network is useful for the effective and efficient model construction and reliability evaluation of large and complex systems. To evaluate the reliability of a multistate flow network, boundary points for specified demands are generated in the existing path- and cut-based methodologies. Using the boundary points, the system reliability can be calculated using analytical or simulation methodologies. However, evaluating reliability using boundary points is an NP-hard problem. To improve the time efficiency of reliability estimation, a path-based simulation approach without boundary points is proposed in this study, where the minimal path without any cycles is used. The contributions of this study are threefold: First, the proposed path-based simulation complements the cut-based simulation to improve the applicability of reliability estimation for various network topologies. Second, the proposed simulation algorithm presents linear time complexity, whereas conventional boundary-based analytical methodologies or simulations consume exponential/factorial time. Third, the time attribute is included in the proposed simulation approach to analyze the behavior of reliability degradation over time. The experimental results, including those of a case study, indicate that the proposed path-based simulation is more effective and efficient than existing boundary-based approaches, particularly for large and complex systems.

Suggested Citation

  • Chang, Ping-Chen, 2024. "A path-based simulation approach for multistate flow network reliability estimation without using boundary points," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024003107
    DOI: 10.1016/j.ress.2024.110237
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thi-Phuong Nguyen, 2022. "Evaluation of network reliability for stochastic-flow air transportation network considering discounted fares from airlines," Annals of Operations Research, Springer, vol. 311(1), pages 335-355, April.
    2. Huang, Cheng-Fu & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2022. "Network reliability evaluation for multi-state computing networks considering demand as the non-integer type," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Chang, Ping-Chen, 2022. "MC-based simulation approach for two-terminal multi-state network reliability evaluation without knowing d-MCs," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2021. "An improved bounding algorithm for approximating multistate network reliability based on state-space decomposition method," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    5. Cheng-Fu Huang, 2019. "Evaluation of system reliability for a stochastic delivery-flow distribution network with inventory," Annals of Operations Research, Springer, vol. 277(1), pages 33-45, June.
    6. Shi, Yan & Behrensdorf, Jasper & Zhou, Jiayan & Hu, Yue & Broggi, Matteo & Beer, Michael, 2024. "Network reliability analysis through survival signature and machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Chang, Ping-Chen & Huang, Ding-Hsiang & Lin, Yi-Kuei & Nguyen, Thi-Phuong, 2021. "Reliability and maintenance models for a time-related multi-state flow network via d-MC approach," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Forghani-elahabad, Majid & Francesquini, Emilio, 2023. "Usage of task and data parallelism for finding the lower boundary vectors in a stochastic-flow network," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    9. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    10. Paweł Marcin Kozyra, 2023. "An efficient algorithm for the reliability evaluation of multistate flow networks under budget constraints," IISE Transactions, Taylor & Francis Journals, vol. 55(11), pages 1091-1102, November.
    11. Huang, Cheng-Hao & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2023. "Network reliability prediction for random capacitated-flow networks via an artificial neural network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Xiaomei Liu & Naiming Xie, 2023. "Grey-based approach for estimating Weibull model and its application," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(21), pages 7601-7617, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Ding-Hsiang, 2024. "An algorithm to generate all d-lower boundary points for a stochastic flow network using dynamic flow constraints," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Ding-Hsiang, 2024. "An algorithm to generate all d-lower boundary points for a stochastic flow network using dynamic flow constraints," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Niu, Yi-Feng & Zhao, Xia & Xu, Xiu-Zhen & Zhang, Shi-Yun, 2023. "Reliability assessment of a stochastic-flow distribution network with carbon emission constraint," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Chang, Ping-Chen, 2022. "MC-based simulation approach for two-terminal multi-state network reliability evaluation without knowing d-MCs," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Shi, Yan & Behrensdorf, Jasper & Zhou, Jiayan & Hu, Yue & Broggi, Matteo & Beer, Michael, 2024. "Network reliability analysis through survival signature and machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Huang, Cheng-Fu & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2022. "Network reliability evaluation for multi-state computing networks considering demand as the non-integer type," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Xu, Xiu-Zhen & Zhou, Run-Hui & Wu, Guo-Lin & Niu, Yi-Feng, 2024. "Evaluating the transmission distance-constrained reliability for a multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Huang, Cheng-Hao & Lin, Yi-Kuei, 2024. "Rescue and safety system development and performance evaluation by network reliability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Chang, Ping-Chen & Huang, Ding-Hsiang & Lin, Yi-Kuei & Nguyen, Thi-Phuong, 2021. "Reliability and maintenance models for a time-related multi-state flow network via d-MC approach," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Ping-Chen Chang & Ding-Hsiang Huang & Cheng-Fu Huang, 2024. "Simulation-based system reliability estimation of a multi-state flow network for all possible demand levels," Annals of Operations Research, Springer, vol. 340(1), pages 117-132, September.
    12. Cheng-Fu Huang & Ding-Hsiang Huang & Yi-Kuei Lin, 2022. "System reliability analysis for a cloud-based network under edge server capacity and budget constraints," Annals of Operations Research, Springer, vol. 312(1), pages 217-234, May.
    13. Ismail Kamdar & Shahid Ali & Juntakan Taweekun & Hafiz Muhammad Ali, 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    14. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Yi-Kuei Lin & Lance Fiondella & Ping-Chen Chang, 2022. "Reliability of time-constrained multi-state network susceptible to correlated component faults," Annals of Operations Research, Springer, vol. 311(1), pages 239-254, April.
    16. Xie, Mingjiang & Wang, Yifei & Zhao, Jianli & Pei, Xianjun & Zhang, Tairui, 2024. "Prediction of pipeline fatigue crack propagation under rockfall impact based on multilayer perceptron," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Majid Forghani-elahabad & Omar Mutab Alsalami, 2023. "Using a Node–Child Matrix to Address the Quickest Path Problem in Multistate Flow Networks under Transmission Cost Constraints," Mathematics, MDPI, vol. 11(24), pages 1-15, December.
    20. Kuen-Suan Chen & Chun-Min Yu, 2022. "Lifetime performance evaluation and analysis model of passive component capacitor products," Annals of Operations Research, Springer, vol. 311(1), pages 51-64, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024003107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.