IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832023007901.html
   My bibliography  Save this article

A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis

Author

Listed:
  • Yeh, Wei-Chang

Abstract

In various network applications like wireless sensors, utilities, IoT, and transport systems, multistate flow networks (MFNs) serve as valuable models. A d-level minimal path (d-MP) is a unique type of MFN characterized by having a maximum flow of d without any redundant arcs. Assessing MFN reliability is critical and often relies on the d-MP algorithm, a foundational method for calculating reliability. Existing d-MP algorithms, however, lack the capability to concurrently identify all-level d-MPs. We propose a novel algorithm, the Hybrid Inequality Binary-Addition-Tree (IBAT), which overcomes existing limitations by concurrently discovering all-level d-MPs (decision-making points), thus enabling more informed decision-making. This hybrid IBAT combines the IBAT with several key techniques: the path-based layered-search algorithm (PLSA), sequential verification, the MP-to-arc state transformation, the cycle test, and the logarithmic prime pairwise comparison method (LPM). In contrast to existing methods, our BAT-based approach consistently showcases superior performance in the parallelized retrieval of all-level d-MPs, as substantiated through experiments conducted on 12 benchmark MFNs. Compared to existing methods, our BAT-based approach demonstrates superior performance in parallelized retrieval of all-level d-MPs in the execution times in discovering d-MPs across all levels, as validated by experiments on 12 benchmark MFNs.

Suggested Citation

  • Yeh, Wei-Chang, 2024. "A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023007901
    DOI: 10.1016/j.ress.2023.109876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forghani-elahabad, Majid & Kagan, Nelson & Mahdavi-Amiri, Nezam, 2019. "An MP-based approximation algorithm on reliability evaluation of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Ramírez-Márquez, José E. & Jiang, Wei, 2006. "Confidence bounds for the reliability of binary capacitated two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 905-914.
    4. Xiaojun (Gene) Shan & Frank A. Felder & David W. Coit, 2017. "Game-theoretic models for electric distribution resiliency/reliability from a multiple stakeholder perspective," IISE Transactions, Taylor & Francis Journals, vol. 49(2), pages 159-177, February.
    5. Yeh, Wei-Chang & Tan, Shi-Yi & Forghani-elahabad, Majid & Khadiri, Mohamed El & Jiang, Yunzhi & Lin, Chen-Shiun, 2022. "New binary-addition tree algorithm for the all-multiterminal binary-state network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Yeh, Wei-Chang, 2023. "Novel recursive inclusion-exclusion technology based on BAT and MPs for heterogeneous-arc binary-state network reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Jane, Chin-Chia, 2011. "Performance evaluation of logistics systems under cost and reliability considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 130-137, March.
    8. Yan, Zhou & Qian, Meng, 2007. "Improving efficiency of solving d-MC problem in stochastic-flow network," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 30-39.
    9. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    10. Yeh, Wei-Chang & Du, Chia-Ming & Tan, Shi-Yi & Forghani-elahabad, Majid, 2023. "Application of LSTM based on the BAT-MCS for binary-state network approximated time-dependent reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Chin‐Chia Jane & Yih‐Wenn Laih, 2012. "Evaluating cost and reliability integrated performance of stochastic logistics systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(7), pages 577-586, October.
    12. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining & Xu, Bei, 2022. "Modeling and evaluation method for resilience analysis of multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Yeh, Wei-Chang, 2022. "BAT-based algorithm for finding all Pareto solutions of the series-parallel redundancy allocation problem with mixed components," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Yeh, Wei-Chang, 2022. "Novel direct algorithm for computing simultaneous all-level reliability of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Bai, Guanghan & Zuo, Ming J. & Tian, Zhigang, 2015. "Search for all d-MPs for all d levels in multistate two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 300-309.
    16. Wei-Chang Yeh & Edward Lin & Chia-Ling Huang & Luxing Yang, 2021. "Predicting Spread Probability of Learning-Effect Computer Virus," Complexity, Hindawi, vol. 2021, pages 1-17, July.
    17. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Yi-Kuei Lin & Shin-Guang Chen, 2022. "An efficient searching method for minimal path vectors in multi-state networks," Annals of Operations Research, Springer, vol. 312(1), pages 333-344, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeh, Wei-Chang, 2024. "Time-reliability optimization for the stochastic traveling salesman problem," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Yi-Feng & Zhao, Xia & Xu, Xiu-Zhen & Zhang, Shi-Yun, 2023. "Reliability assessment of a stochastic-flow distribution network with carbon emission constraint," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Yeh, Wei-Chang, 2024. "Time-reliability optimization for the stochastic traveling salesman problem," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Yeh, Wei-Chang, 2020. "A new method for verifying d-MC candidates," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Yeh, Wei-Chang & Du, Chia-Ming & Tan, Shi-Yi & Forghani-elahabad, Majid, 2023. "Application of LSTM based on the BAT-MCS for binary-state network approximated time-dependent reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Niu, Yi-Feng & Wan, Xiao-Yu & Xu, Xiu-Zhen & Ding, Dong, 2020. "Finding all multi-state minimal paths of a multi-state flow network via feasible circulations," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. Niu, Yi-Feng, 2021. "Performance measure of a multi-state flow network under reliability and maintenance cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    9. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    10. Xu, Xiu-Zhen & Zhou, Run-Hui & Wu, Guo-Lin & Niu, Yi-Feng, 2024. "Evaluating the transmission distance-constrained reliability for a multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Yeh, Wei-Chang, 2023. "QB-II for evaluating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "Evaluating the reliability of a stochastic distribution network in terms of minimal cuts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 75-97.
    13. Yeh, Wei-Chang, 2022. "Novel direct algorithm for computing simultaneous all-level reliability of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Yeh, Wei-Chang, 2022. "Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-state network reliability approximation," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Xiu-Zhen Xu & Yi-Feng Niu & Qing Li, 2019. "Efficient Enumeration of - Minimal Paths in Reliability Evaluation of Multistate Networks," Complexity, Hindawi, vol. 2019, pages 1-10, March.
    16. Wu, Baichao & Sun, Long, 2024. "A novel layer-by-layer recursive decomposition algorithm for calculation of network reliability," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    17. Yeh, Wei-Chang, 2021. "Novel binary-addition tree algorithm (BAT) for binary-state network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    18. Yeh, Wei-Chang & Hao, Zhifeng & Forghani-elahabad, Majid & Wang, Gai-Ge & Lin, Yih-Lon, 2021. "Novel Binary-Addition Tree Algorithm for Reliability Evaluation of Acyclic Multistate Information Networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    19. Paweł Marcin Kozyra, 2020. "Analysis of minimal path and cut vectors in multistate monotone systems and use it for detection of binary type multistate monotone systems," Journal of Risk and Reliability, , vol. 234(5), pages 686-695, October.
    20. Yi-Feng Niu & Can He & De-Qiang Fu, 2022. "Reliability assessment of a multi-state distribution network under cost and spoilage considerations," Annals of Operations Research, Springer, vol. 309(1), pages 189-208, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023007901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.