IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v150y2016icp1-10.html
   My bibliography  Save this article

An improved algorithm for finding all minimal paths in a network

Author

Listed:
  • Bai, Guanghan
  • Tian, Zhigang
  • Zuo, Ming J.

Abstract

Minimal paths (MPs) play an important role in network reliability evaluation. In this paper, we report an efficient recursive algorithm for finding all MPs in two-terminal networks, which consist of a source node and a sink node. A linked path structure indexed by nodes is introduced, which accepts both directed and undirected form of networks. The distance between each node and the sink node is defined, and a simple recursive algorithm is presented for labeling the distance for each node. Based on the distance between each node and the sink node, additional conditions for backtracking are incorporated to reduce the number of search branches. With the newly introduced linked node structure, the distances between each node and the sink node, and the additional backtracking conditions, an improved backtracking algorithm for searching for all MPs is developed. In addition, the proposed algorithm can be adapted to search for all minimal paths for each source–sink pair in networks consisting of multiple source nodes and/or multiple sink nodes. Through computational experiments, it is demonstrated that the proposed algorithm is more efficient than existing algorithms when the network size is not too small. The proposed algorithm becomes more advantageous as the size of the network grows.

Suggested Citation

  • Bai, Guanghan & Tian, Zhigang & Zuo, Ming J., 2016. "An improved algorithm for finding all minimal paths in a network," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 1-10.
  • Handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:1-10
    DOI: 10.1016/j.ress.2016.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201600020X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Guanghan & Zuo, Ming J. & Tian, Zhigang, 2015. "Search for all d-MPs for all d levels in multistate two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 300-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Yi-Feng & Wan, Xiao-Yu & Xu, Xiu-Zhen & Ding, Dong, 2020. "Finding all multi-state minimal paths of a multi-state flow network via feasible circulations," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Majid Forghani-elahabad & Omar Mutab Alsalami, 2023. "Using a Node–Child Matrix to Address the Quickest Path Problem in Multistate Flow Networks under Transmission Cost Constraints," Mathematics, MDPI, vol. 11(24), pages 1-15, December.
    4. Li, Shunlong & Wang, Jie & He, Shaoyang, 2023. "Connectivity probability evaluation of a large-scale highway bridge network using network decomposition," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Yi-Kuei Lin & Thi-Phuong Nguyen & Louis Cheng-Lu Yeng, 2022. "Reliability evaluation of a stochastic multimodal transport network under time and budget considerations," Annals of Operations Research, Springer, vol. 312(1), pages 369-387, May.
    6. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Yi-Kuei Lin & Cheng-Fu Huang & Chin-Chia Chang, 2022. "Reliability of spare routing via intersectional minimal paths within budget and time constraints by simulation," Annals of Operations Research, Springer, vol. 312(1), pages 345-368, May.
    9. Ping-Chen Chang, 2022. "Reliability evaluation and big data analytics architecture for a stochastic flow network with time attribute," Annals of Operations Research, Springer, vol. 311(1), pages 3-18, April.
    10. Yi-Kuei Lin & Lance Fiondella & Ping-Chen Chang, 2022. "Reliability of time-constrained multi-state network susceptible to correlated component faults," Annals of Operations Research, Springer, vol. 311(1), pages 239-254, April.
    11. Li, Jiahui & Qi, Xiaogang & He, Yi & Liu, Lifang, 2024. "SDN candidate and protection path selection for link failure protection in hybrid SDNs," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    12. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining & Xu, Bei, 2022. "Modeling and evaluation method for resilience analysis of multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    2. Yeh, Wei-Chang & Chu, Ta-Chung, 2018. "A novel multi-distribution multi-state flow network and its reliability optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 209-217.
    3. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Huang, Ding-Hsiang, 2024. "An algorithm to generate all d-lower boundary points for a stochastic flow network using dynamic flow constraints," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    5. Huang, Ding-Hsiang & Huang, Cheng-Fu & Lin, Yi-Kuei, 2020. "Exact project reliability for a multi-state project network subject to time and budget constraints," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Yeh, Wei-Chang, 2021. "Novel binary-addition tree algorithm (BAT) for binary-state network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Yeh, Wei-Chang, 2023. "QB-II for evaluating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Yeh, Wei-Chang, 2020. "A new method for verifying d-MC candidates," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Wang, Shuang & Jia, Haiying & Lu, Jing & Yang, Dong, 2023. "Crude oil transportation route choices: A connectivity reliability-based approach," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Yeh, Wei-Chang, 2022. "Novel direct algorithm for computing simultaneous all-level reliability of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Yeh, Wei-Chang, 2021. "A quick BAT for evaluating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Hao, Zhifeng & Yeh, Wei-Chang & Zuo, Ming & Wang, Jing, 2020. "Multi-distribution multi-commodity multistate flow network model and its reliability evaluation algorithm," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Niu, Yi-Feng, 2021. "Performance measure of a multi-state flow network under reliability and maintenance cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Yeh, Wei-Chang, 2024. "A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    15. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Yeh, Wei-Chang & Tan, Shi-Yi & Forghani-elahabad, Majid & Khadiri, Mohamed El & Jiang, Yunzhi & Lin, Chen-Shiun, 2022. "New binary-addition tree algorithm for the all-multiterminal binary-state network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    17. Yeh, Wei-Chang, 2021. "Novel Algorithm for Computing All-Pairs Homogeneity-Arc Binary-State Undirected Network Reliability," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Huang, Cheng-Hao & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2023. "Network reliability prediction for random capacitated-flow networks via an artificial neural network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Yeh, Cheng-Ta & Lin, Yi-Kuei & Yeng, Louis Cheng-Lu & Huang, Pei-Tzu, 2021. "Reliability evaluation of a multistate railway transportation network from the perspective of a travel agent," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    20. Huang, Cheng-Hao & Lin, Yi-Kuei, 2024. "Rescue and safety system development and performance evaluation by network reliability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.