IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v236y2023ics0951832023001928.html
   My bibliography  Save this article

Development of design guidelines using probabilistic framework for the development of smart thickening fluid based ultra resistant adaptive kinematic soft human armor (SURAKSHA)

Author

Listed:
  • Kumar, Suman
  • Saxena, Sanchit
  • Sharma, Hrishikesh
  • Gangolu, Jaswanth
  • Prabhu, T. Ajeeth

Abstract

In the present era, the form of war has been changing constantly, and it has taken various shapes such as guerilla warfare, insurgency, and similar. With the rapid development in technology, arms and ammunition have modernized. Due to the rapid development in the lethality of bullets, there is an immense demand for the development of enhanced protective suit which can safeguard against these threats and are simultaneously flexible and light. This paper presents the design and development of a probabilistic models of Shear Thickening Fluid Based Ultra Resistant Adaptive Kinematic Soft Human Armor (SURAKSHA) and proposed the design guidelines based on the outcome to counter extreme threats arising from the from standard arms and ammunition. The STF encapsulated bubble wrap configuration consists of STF filled in bubbles and these bubbles are either uniformly or randomly placed to prepare a layer of bubbles. The numerical strategies along with the probabilistic model for modelling of STF encapsulated bubble wrap configuration is proposed and presented. This new configuration is found to be more efficient under the impact of projectile of BR I, II A, II, and III A as per NIJ standards compared to STF treated fabric in terms of ballistic performance.

Suggested Citation

  • Kumar, Suman & Saxena, Sanchit & Sharma, Hrishikesh & Gangolu, Jaswanth & Prabhu, T. Ajeeth, 2023. "Development of design guidelines using probabilistic framework for the development of smart thickening fluid based ultra resistant adaptive kinematic soft human armor (SURAKSHA)," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023001928
    DOI: 10.1016/j.ress.2023.109277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023001928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Liu, Jin & Zhai, Changhai & Yu, Peng, 2022. "A Probabilistic Framework to Evaluate Seismic Resilience of Hospital Buildings Using Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Cho, Jaehyun & Lee, Sang Hun & Kim, Jaewhan & Park, Seong Kyu, 2022. "Framework to model severe accident management guidelines into Level 2 probabilistic safety assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Gangolu, Jaswanth & Kumar, Ajay & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Probabilistic demand models and performance-based fragility estimates for concrete protective structures subjected to missile impact," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Reliability analysis & performance-based code calibration for slabs/walls of protective structures subject to air blast loading," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iaiani, Matteo & Sorichetti, Riccardo & Tugnoli, Alessandro & Cozzani, Valerio, 2024. "Modelling standoff distances to prevent escalation in shooting attacks to tanks storing hazardous materials," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhuyan, Kasturi & Sharma, Hrishikesh, 2024. "Probabilistic capacity models and fragility estimate for NRC and UHSC panels subjected to contact blast," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Zheng, Zhi & Tian, Aonan & Pan, Xiaolan & Ji, Duofa & Wang, Yong, 2024. "The damage-based fragility analysis and probabilistic safety assessment of containment under internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Reliability analysis & performance-based code calibration for slabs/walls of protective structures subject to air blast loading," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Shang, Qingxue & Guo, Xiaodong & Li, Jichao & Wang, Tao, 2022. "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    7. Pei, Shunshun & Zhai, Changhai & Hu, Jie, 2024. "Surrogate model-assisted seismic resilience assessment of the interdependent transportation and healthcare system considering a two-stage recovery strategy," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    9. HIMOTO, Keisuke & SAWADA, Yuto & OHMIYA, Yoshifumi, 2024. "Quantifying fire resilience of buildings considering the impact of water damage accompanied by fire extinguishment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Adland, Roar & Jia, Haiying & Lode, Tønnes & Skontorp, Jørgen, 2021. "The value of meteorological data in marine risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    12. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Szlapczynski, Rafal & Szlapczynska, Joanna, 2021. "A ship domain-based model of collision risk for near-miss detection and Collision Alert Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    16. Li, Bo & Zhang, Qiling & Yang, Shengmei & Tian, Yaling & Li, Zhi, 2023. "Identification of failure modes and paths of reservoir dams under explosion loads," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Fan, Lixian & Zhang, Meng & Yin, Jingbo & Zhang, Jinfen, 2022. "Impacts of dynamic inspection records on port state control efficiency using Bayesian network analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Li, He & Deng, Zhi-Ming & Golilarz, Noorbakhsh Amiri & Guedes Soares, C., 2021. "Reliability analysis of the main drive system of a CNC machine tool including early failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Taleb-Berrouane, Mohammed & Khan, Faisal & Hawboldt, Kelly, 2021. "Corrosion risk assessment using adaptive bow-tie (ABT) analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    20. Yan, Ran & Wang, Shuaian & Cao, Jiannong & Sun, Defeng, 2021. "Shipping Domain Knowledge Informed Prediction and Optimization in Port State Control," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 52-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023001928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.