IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v250y2024ics0951832024003508.html
   My bibliography  Save this article

A novel multiple linearization method for reliability analysis based on evidence theory

Author

Listed:
  • Cai, Yu
  • Zhao, Wei
  • Wang, Xiaoping
  • Ou, Yanjun
  • Chen, Yangyang
  • Li, Xueyan

Abstract

Evidence theory has been applied in structural reliability assessment to address epistemic uncertainties, given its capability to deal with imprecise, incomplete and even contradictory information. An important challenge in structural reliability assessment based on the framework of evidence theory is its expensive computational cost in multidimensional problems. In this work, a modified multiple linearization method is proposed to identify a set of hyperplane approximations to the limit state function. It provides a clear guidance for the hyperplanes by evaluating curvature magnitude of the original limit state at the most probable point along each axis in the rotated standard normal space, and shows good stability and satisfactory accuracy in nonlinear reliability analysis based on evidence theory. The belief measure and plausibility measure of the structure are assessed by the hyperplanes through the intersection or union of the failure domains. In the meantime, the classification and division of focal elements in failure set, safety set and uncertain set will be made through the segment edge of the failure and safety domain to reduce the computation burden. Finally, four mathematical examples and engineering cases are explored to illustrate the methodology and show its benefits.

Suggested Citation

  • Cai, Yu & Zhao, Wei & Wang, Xiaoping & Ou, Yanjun & Chen, Yangyang & Li, Xueyan, 2024. "A novel multiple linearization method for reliability analysis based on evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003508
    DOI: 10.1016/j.ress.2024.110278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tabandeh, Armin & Sharma, Neetesh & Gardoni, Paolo, 2022. "Uncertainty propagation in risk and resilience analysis of hierarchical systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Wang, Yuhao & Pang, Yutian & Chen, Oliver & Iyer, Hari N. & Dutta, Parikshit & Menon, P.K. & Liu, Yongming, 2021. "Uncertainty quantification and reduction in aircraft trajectory prediction using Bayesian-Entropy information fusion," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Jung, Yongsu & Jo, Hwisang & Choo, Jeonghwan & Lee, Ikjin, 2022. "Statistical model calibration and design optimization under aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Liu, Qiang & Zhang, Hailin, 2022. "Reliability evaluation of weighted voting system based on D–S evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Jinhua Mi & Yan-Feng Li & Weiwen Peng & Hong-Zhong Huang, 2018. "Reliability Analysis of Complex Multi-state System with Common Cause Failure Based on DS Evidence Theory and Bayesian Network," Springer Series in Reliability Engineering, in: Anatoly Lisnianski & Ilia Frenkel & Alex Karagrigoriou (ed.), Recent Advances in Multi-state Systems Reliability, pages 19-38, Springer.
    6. Zhou, Daoqing & He, Jingjing & Du, Yi-Mu & Sun, C.P. & Guan, Xuefei, 2021. "Probabilistic information fusion with point, moment and interval data in reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Sheng-Tong Zhou & Di Wang & Qian Xiao & Jian-min Zhou & Hong-Guang Li & Wen-Bing Tu, 2021. "An improved first order reliability method based on modified Armijo rule and interpolation-based backtracking scheme," Journal of Risk and Reliability, , vol. 235(2), pages 209-229, April.
    8. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
    10. Zhou, Tong & Peng, Yongbo, 2022. "Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    11. Rathnakumar, Rahul & Pang, Yutian & Liu, Yongming, 2023. "Epistemic and aleatoric uncertainty quantification for crack detection using a Bayesian Boundary Aware Convolutional Network," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    12. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    13. Shah, Harsheel & Hosder, Serhat & Winter, Tyler, 2015. "Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 59-72.
    14. Simon, C. & Weber, P. & Evsukoff, A., 2008. "Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 950-963.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    3. Zhou, Daoqing & Sun, C.P. & Du, Yi-Mu & Guan, Xuefei, 2022. "Degradation and reliability of multi-function systems using the hazard rate matrix and Markovian approximation," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    4. Wang, Rongxi & Li, Yufan & Xu, Jinjin & Wang, Zhen & Gao, Jianmin, 2022. "F2G: A hybrid fault-function graphical model for reliability analysis of complex equipment with coupled faults," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Deng, Jian, 2022. "Probabilistic characterization of soil properties based on the maximum entropy method from fractional moments: Model development, case study, and application," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.
    8. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Yingchun Xu & Xiaohu Zheng & Wen Yao & Ning Wang & Xiaoqian Chen, 2021. "A sequential multi-prior integration and updating method for complex multi-level system based on Bayesian melding method," Journal of Risk and Reliability, , vol. 235(5), pages 863-876, October.
    10. Li, He & Deng, Zhi-Ming & Golilarz, Noorbakhsh Amiri & Guedes Soares, C., 2021. "Reliability analysis of the main drive system of a CNC machine tool including early failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Huang, Tudi & Xiahou, Tangfan & Mi, Jinhua & Chen, Hong & Huang, Hong-Zhong & Liu, Yu, 2024. "Merging multi-level evidential observations for dynamic reliability assessment of hierarchical multi-state systems: A dynamic Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    12. Zhou, Hang & Lopes Genez, Thiago Augusto & Brintrup, Alexandra & Parlikad, Ajith Kumar, 2022. "A hybrid-learning decomposition algorithm for competing risk identification within fleets of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Andrzej Tytko & Grzegorz Olszyna & Grzegorz Kocór & Mariusz Szot, 2023. "Some Stochastic Aspects of Safety Work of Steel Wire Ropes Used in Mining-Shaft Hoists," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
    14. Hui Xiao & Minhao Cao & Gang Kou & Xiaojun Yuan, 2021. "Optimal element allocation and sequencing of multi-state series systems with two levels of performance sharing," Journal of Risk and Reliability, , vol. 235(2), pages 282-292, April.
    15. González, Esteban Le Maitre & Desforges, Xavier & Archimède, Bernard, 2018. "Assessment method of the multicomponent systems future ability to achieve productive tasks from local prognoses," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 403-415.
    16. Song, Jingwen & Cui, Yifan & Wei, Pengfei & Valdebenito, Marcos A. & Zhang, Weihong, 2024. "Constrained Bayesian optimization algorithms for estimating design points in structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Yin, Mingang & Liu, Yu & Liu, Shuntao & Chen, Yiming & Yan, Yutao, 2023. "Scheduling heterogeneous repair channels in selective maintenance of multi-state systems with maintenance duration uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Zheng Liu & Xin Liu & Hong-Zhong Huang & Pingyu Zhu & Zhongwei Liang, 2022. "A new inherent reliability modeling and analysis method based on imprecise Dirichlet model for machine tool spindle," Annals of Operations Research, Springer, vol. 311(1), pages 295-310, April.
    20. Li, Jin-Yang & Lu, Jubin & Zhou, Hao, 2023. "Reliability analysis of structures with inerter-based isolation layer under stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.