IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023004611.html
   My bibliography  Save this article

Epistemic and aleatoric uncertainty quantification for crack detection using a Bayesian Boundary Aware Convolutional Network

Author

Listed:
  • Rathnakumar, Rahul
  • Pang, Yutian
  • Liu, Yongming

Abstract

Accurately detecting crack boundaries is crucial for reliability assessment and risk management of structures and materials, such as structural health monitoring, diagnostics, prognostics, and maintenance scheduling. Uncertainty quantification of crack detection is challenging due to various stochastic factors, such as measurement noises, signal processing, and model simplifications. A machine learning-based approach is proposed to quantify both epistemic and aleatoric uncertainties concurrently. We introduce a Bayesian Boundary-Aware Convolutional Network (B-BACN) that emphasizes uncertainty-aware boundary refinement to generate precise and reliable crack boundary detections. The proposed method employs a multi-task learning approach, where we use Monte Carlo Dropout to learn the epistemic uncertainty and a Gaussian sampling function to predict each sample’s aleatoric uncertainty. Moreover, we include a boundary refinement loss to B-BACN to enhance the determination of defect boundaries. The proposed method is demonstrated with benchmark experimental results and compared with several existing methods. The experimental results illustrate the effectiveness of our proposed approach in uncertainty-aware crack boundary detection, minimizing misclassification rate, and improving model calibration capabilities.

Suggested Citation

  • Rathnakumar, Rahul & Pang, Yutian & Liu, Yongming, 2023. "Epistemic and aleatoric uncertainty quantification for crack detection using a Bayesian Boundary Aware Convolutional Network," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004611
    DOI: 10.1016/j.ress.2023.109547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023004611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Yu & Zhao, Wei & Wang, Xiaoping & Ou, Yanjun & Chen, Yangyang & Li, Xueyan, 2024. "A novel multiple linearization method for reliability analysis based on evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.