IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v137y2015icp40-49.html
   My bibliography  Save this article

First and second order approximate reliability analysis methods using evidence theory

Author

Listed:
  • Zhang, Z.
  • Jiang, C.
  • Wang, G.G.
  • Han, X.

Abstract

The first order approximate reliability method (FARM) and second order approximate reliability method (SARM) are formulated based on evidence theory in this paper. The proposed methods can significantly improve the computational efficiency for evidence-theory-based reliability analysis, while generally provide sufficient precision. First, the most probable focal element (MPFE), an important concept as the most probable point (MPP) in probability-theory-based reliability analysis, is searched using a uniformity approach. Subsequently, FARM approximates the limit-state function around the MPFE using the linear Taylor series, while SARM approximates it using the quadratic Taylor series. With the first and second order approximations, the reliability interval composed of the belief measure and the plausibility measure is efficiently obtained for FARM and SARM, respectively. Two simple problems with explicit expressions and one engineering application of vehicle frontal impact are presented to demonstrate the effectiveness of the proposed methods.

Suggested Citation

  • Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
  • Handle: RePEc:eee:reensy:v:137:y:2015:i:c:p:40-49
    DOI: 10.1016/j.ress.2014.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014003184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L. & Sallaberry, C.J., 2006. "Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1414-1434.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Limbourg, Philipp & de Rocquigny, Etienne, 2010. "Uncertainty analysis using evidence theory – confronting level-1 and level-2 approaches with data availability and computational constraints," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 550-564.
    2. David Curto & Fernando Acebes & Jose M Gonzalez-Varona & David Poza, 2024. "Impact of aleatoric, stochastic and epistemic uncertainties on project cost contingency reserves," Papers 2406.03500, arXiv.org.
    3. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Pi, Shiqiang & Liu, Ying & Chen, Haiyan & Deng, Yan & Xiao, Longyuan, 2021. "Probability of loss of assured safety in systems with weak and strong links subject to dependent failures and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    6. Sarazin, Gabriel & Morio, Jérôme & Lagnoux, Agnès & Balesdent, Mathieu & Brevault, Loïc, 2021. "Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Helton, Jon C. & Johnson, Jay D., 2011. "Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1034-1052.
    8. Schöbi, Roland & Sudret, Bruno, 2019. "Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 129-141.
    9. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2007. "Verification of the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1363-1373.
    10. Pi, Shiqiang & Xiao, Longyuan, 2020. "Investigation of temperature-dependent high consequence system with weak and strong links based on probability of loss of assured safety," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Simon, C. & Weber, P. & Evsukoff, A., 2008. "Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 950-963.
    12. Chabridon, Vincent & Balesdent, Mathieu & Bourinet, Jean-Marc & Morio, Jérôme & Gayton, Nicolas, 2018. "Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 164-178.
    13. González, Esteban Le Maitre & Desforges, Xavier & Archimède, Bernard, 2018. "Assessment method of the multicomponent systems future ability to achieve productive tasks from local prognoses," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 403-415.
    14. Curto, D. & Acebes, F. & González-Varona, J.M. & Poza, D., 2022. "Impact of aleatoric, stochastic and epistemic uncertainties on project cost contingency reserves," International Journal of Production Economics, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:137:y:2015:i:c:p:40-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.