IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022002976.html
   My bibliography  Save this article

F2G: A hybrid fault-function graphical model for reliability analysis of complex equipment with coupled faults

Author

Listed:
  • Wang, Rongxi
  • Li, Yufan
  • Xu, Jinjin
  • Wang, Zhen
  • Gao, Jianmin

Abstract

Reliability analysis plays a crucial role in revealing the failure causes and determining the improvement measures for reliability growth. However, reliability analysis of complex equipment with coupled faults still corresponds to a challenging task, due to unclear coupling mechanism and unsuitable analysis model. A down-top, deductive modeling method, named as fault-function graph (F2G), is proposed. First, the meta models are defined to normalize all the atomic faults, coupling relations and coupling forms in modeling. Next, an initial fault model is constructed based on typical fault-relations and coupling forms. Furthermore, the functional hierarchy of fault determined by IDEF0 is appended. Lastly, the rigorous modeling rules and computing processes are explained based on an actual case. As a graphical modeling method, it handles the coupling faults by integrating the system functional and fault information. Exploiting the advantages of conventional models, the coupling relations are quantified, and the false relations are detected based on functional constraints. Therefore, the proposed method can be used flexibly in the reliability modeling of coupled faults. Moreover, it provides a foundation for the comprehensive and dynamic reliability analysis and the failure mechanism mining of complex equipment, and it can be used in other engineering applications as well.

Suggested Citation

  • Wang, Rongxi & Li, Yufan & Xu, Jinjin & Wang, Zhen & Gao, Jianmin, 2022. "F2G: A hybrid fault-function graphical model for reliability analysis of complex equipment with coupled faults," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022002976
    DOI: 10.1016/j.ress.2022.108662
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tong, Yanjie & Tien, Iris, 2019. "Analytical probability propagation method for reliability analysis of general complex networks," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 21-30.
    2. Jinhua Mi & Yan-Feng Li & Weiwen Peng & Hong-Zhong Huang, 2018. "Reliability Analysis of Complex Multi-state System with Common Cause Failure Based on DS Evidence Theory and Bayesian Network," Springer Series in Reliability Engineering, in: Anatoly Lisnianski & Ilia Frenkel & Alex Karagrigoriou (ed.), Recent Advances in Multi-state Systems Reliability, pages 19-38, Springer.
    3. Ding, Rui & Liu, Zehua & Xu, Jintao & Meng, Fanpeng & Sui, Yang & Men, Xinhong, 2021. "A novel approach for reliability assessment of residual heat removal system for HPR1000 based on failure mode and effect analysis, fault tree analysis, and fuzzy Bayesian network methods," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Amin Moniri-Morad & Mohammad Pourgol-Mohammad & Hamid Aghababaei & Javad Sattarvand, 2019. "Reliability-based covariate analysis for complex systems in heterogeneous environment: Case study of mining equipment," Journal of Risk and Reliability, , vol. 233(4), pages 593-604, August.
    5. Li, Xiao-Yang & Liu, Yue & Lin, Yan-Hui & Xiao, Liang-Hua & Zio, Enrico & Kang, Rui, 2021. "A generalized petri net-based modeling framework for service reliability evaluation and management of cloud data centers," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Yuan, Kai & Xiao, Ning-Cong & Wang, Zhonglai & Shang, Kun, 2020. "System reliability analysis by combining structure function and active learning kriging model," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Yu, Haiyue & Wu, Xinyang & Wu, Xiaoyue, 2020. "An extended object-oriented petri net model for mission reliability evaluation of phased-mission system with time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    8. Byun, Ji-Eun & Song, Junho, 2021. "A general framework of Bayesian network for system reliability analysis using junction tree," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Yang, Shunkun & Shao, Qi & Bian, Chong, 2022. "Reliability analysis of ensemble fault tolerance for soft error mitigation against complex radiation effect," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    11. Taleb-Berrouane, Mohammed & Khan, Faisal & Amyotte, Paul, 2020. "Bayesian Stochastic Petri Nets (BSPN) - A new modelling tool for dynamic safety and reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Zhu, Huaxing & Zhang, Chi, 2019. "Expanding a complex networked system for enhancing its reliability evaluated by a new efficient approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 205-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Xu, Jinjin & Wang, Rongxi & Liang, Zeming & Liu, Pengpeng & Gao, Jianmin & Wang, Zhen, 2023. "Physics-guided, data-refined fault root cause tracing framework for complex electromechanical system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Ying & Huang, Tudi & Li, Yan-Feng & Huang, Hong-Zhong, 2023. "Reliability modeling for power converter in satellite considering periodic phased mission," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Yingchun Xu & Xiaohu Zheng & Wen Yao & Ning Wang & Xiaoqian Chen, 2021. "A sequential multi-prior integration and updating method for complex multi-level system based on Bayesian melding method," Journal of Risk and Reliability, , vol. 235(5), pages 863-876, October.
    6. Li, He & Deng, Zhi-Ming & Golilarz, Noorbakhsh Amiri & Guedes Soares, C., 2021. "Reliability analysis of the main drive system of a CNC machine tool including early failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Huang, Tudi & Xiahou, Tangfan & Mi, Jinhua & Chen, Hong & Huang, Hong-Zhong & Liu, Yu, 2024. "Merging multi-level evidential observations for dynamic reliability assessment of hierarchical multi-state systems: A dynamic Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Zhou, Daoqing & Sun, C.P. & Du, Yi-Mu & Guan, Xuefei, 2022. "Degradation and reliability of multi-function systems using the hazard rate matrix and Markovian approximation," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    9. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Yin, Mingang & Liu, Yu & Liu, Shuntao & Chen, Yiming & Yan, Yutao, 2023. "Scheduling heterogeneous repair channels in selective maintenance of multi-state systems with maintenance duration uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    12. Chiachío, Manuel & Saleh, Ali & Naybour, Susannah & Chiachío, Juan & Andrews, John, 2022. "Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Zhou, Hang & Lopes Genez, Thiago Augusto & Brintrup, Alexandra & Parlikad, Ajith Kumar, 2022. "A hybrid-learning decomposition algorithm for competing risk identification within fleets of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Andrzej Tytko & Grzegorz Olszyna & Grzegorz Kocór & Mariusz Szot, 2023. "Some Stochastic Aspects of Safety Work of Steel Wire Ropes Used in Mining-Shaft Hoists," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
    15. Hui Xiao & Minhao Cao & Gang Kou & Xiaojun Yuan, 2021. "Optimal element allocation and sequencing of multi-state series systems with two levels of performance sharing," Journal of Risk and Reliability, , vol. 235(2), pages 282-292, April.
    16. Zheng Liu & Xin Liu & Hong-Zhong Huang & Pingyu Zhu & Zhongwei Liang, 2022. "A new inherent reliability modeling and analysis method based on imprecise Dirichlet model for machine tool spindle," Annals of Operations Research, Springer, vol. 311(1), pages 295-310, April.
    17. Junyuan Wang & Jimin Ye & Qianru Ma & Pengfei Xie, 2022. "An extended geometric process repairable model with its repairman having vacation," Annals of Operations Research, Springer, vol. 311(1), pages 401-415, April.
    18. Yuan-Jian Yang & Ya-Lan Xiong & Xin-Yin Zhang & Gui-Hua Wang & Bihai Zou, 2022. "Reliability analysis of continuous emission monitoring system with common cause failure based on fuzzy FMECA and Bayesian networks," Annals of Operations Research, Springer, vol. 311(1), pages 451-467, April.
    19. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Sharp, Alanna & Andrade, Jose & Ruffini, Nicholas, 2019. "Design for reliability for the high reliability fuze," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 54-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022002976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.