IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v249y2024ics0951832024002989.html
   My bibliography  Save this article

Merging multi-level evidential observations for dynamic reliability assessment of hierarchical multi-state systems: A dynamic Bayesian network approach

Author

Listed:
  • Huang, Tudi
  • Xiahou, Tangfan
  • Mi, Jinhua
  • Chen, Hong
  • Huang, Hong-Zhong
  • Liu, Yu

Abstract

Dynamic reliability assessment has offered a new paradigm for engineered systems to integrate multi-level observations to update the reliability measures of a specific running system. The existent work on dynamic reliability assessment can only leverage precise observations and cannot be straightforwardly implemented in scenarios where observations are imprecise. However, the observations are inevitably imprecise owing to the limited accuracy of inspection techniques and vague judgments of the system state. In engineering scenarios, multi-state systems (MSSs) with a hierarchical structure are commonly existent, and the imprecise observations can be collected across multiple physical levels of the system. In this article, the uncertainty associated with imprecise observations is characterized by the evidence theory, and it can be therefore regarded as an evidential form. A dynamic Bayesian network (DBN) model is utilized to evaluate the reliability of hierarchical MSSs with multi-level evidential observations. Subsequently, the evidence theory is implemented to quantify epistemic uncertainties associated with imprecise observations. These observations, sourced from multiple physical levels, are merged by the DBN model using the Dempster rule of combination (DRC) to update the reliability of a specific running system in a dynamic fashion. The feasibility and correctness of the proposed method have been demonstrated through a numerical case and a real engineering case of a kerosene filling control system (KFCS), and the result indicates that the proposed DBN-based algorithm methods have high applicability and generalizability.

Suggested Citation

  • Huang, Tudi & Xiahou, Tangfan & Mi, Jinhua & Chen, Hong & Huang, Hong-Zhong & Liu, Yu, 2024. "Merging multi-level evidential observations for dynamic reliability assessment of hierarchical multi-state systems: A dynamic Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002989
    DOI: 10.1016/j.ress.2024.110225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.