IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v171y2018icp169-173.html
   My bibliography  Save this article

A new definition of complexity in a risk analysis setting

Author

Listed:
  • Jensen, Anders
  • Aven, Terje

Abstract

In this paper, we discuss the concept of complexity in a risk analysis context. Inspired by the work of Johansen and Rausand, a new perspective on complexity is presented which includes several common definitions of complexity as special cases. The idea is to link complexity to activities, to the knowledge about the activity and its consequences (including scenarios, events, outcomes), and to the knowledge about the sub-activities: an activity is considered complex if we have poor knowledge about the consequences of the activity, even if we have strong knowledge about the consequences of its sub-activities. In the paper, we show how this perspective provides new insights about the complexity concept and related risk understanding, risk assessment and risk management. The perspective allows in particular for novel ways of characterizing the risk of complex systems and activities. Some examples are used to illustrate the perspective and the discussion.

Suggested Citation

  • Jensen, Anders & Aven, Terje, 2018. "A new definition of complexity in a risk analysis setting," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 169-173.
  • Handle: RePEc:eee:reensy:v:171:y:2018:i:c:p:169-173
    DOI: 10.1016/j.ress.2017.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017304635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Abrahamsen, HÃ¥kon Bjorheim, 2020. "A New Framework To Idenitfy And Assess Hidden Assumptions In The Background Knowledge Of A Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Aven, Terje & Ylönen, Marja, 2018. "A risk interpretation of sociotechnical safety perspectives," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 13-18.
    4. Yin, Xuanpeng & Xu, Xuanhua & Pan, Bin, 2021. "Selection of Strategy for Large Group Emergency Decision-making based on Risk Measurement," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Amodeo, Domenico C. & Francis, Royce A., 2019. "The role of protocol layers and macro-cognitive functions in engineered system resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    6. Dariusz Szmel & Wiesław Zabłocki & Przemysław Ilczuk & Andrzej Kochan, 2019. "Method for Selecting the Safety Integrity Level for the Control-Command and Signaling Functions," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    7. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Feng, Jian Rui & Zhao, Meng-ke & Lu, Shou-xiang, 2024. "Accident spread and risk propagation mechanism in complex industrial system network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:171:y:2018:i:c:p:169-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.