IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v236y2023ics0951832023002260.html
   My bibliography  Save this article

One-step look-ahead policy for active learning reliability analysis

Author

Listed:
  • Pei, Pei
  • Zhou, Tong

Abstract

Active-learning reliability analysis is essentially a problem of sequential decision making under uncertainty from the Bayesian decision-theoretic perspective. Hence, leveraging on basic principle of the one-step look-ahead policy, a novel learning function named Targeted integrated mean squared error (TIMSE) is proposed to combine polynomial-chaos Kriging and probability density evolution method for structural reliability analysis. The TIMSE makes the following three critical contributions. First, its closed-form formula is tractable, getting rid of cumbersome issues about numerical quadrature or drawing realizations of Gaussian process. Second, the TIMSE accounts for global impacts of adding a new point on any other point. Third, the TIMSE takes into account the horizon of future experimental designs, by virtue of Kriging update formulae. Besides, a hybrid convergence criterion is developed that effectively avoids two categories of premature termination. Two benchmark analytical functions and three numerical examples are investigated, and comparisons are made against several existing reliability methods. Results indicate that the TIMSE outperforms its localized version and other existing learning functions. Moreover, the proposed reliability approach is more computationally advantageous when time-consuming, complex dynamic problems are involved.

Suggested Citation

  • Pei, Pei & Zhou, Tong, 2023. "One-step look-ahead policy for active learning reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023002260
    DOI: 10.1016/j.ress.2023.109312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023002260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tong, Ming-Na & Zhao, Yan-Gang & Lu, Zhao-Hui, 2021. "Normal transformation for correlated random variables based on L-moments and its application in reliability engineering," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Zhang, Jian & Gong, Weijie & Yue, Xinxin & Shi, Maolin & Chen, Lei, 2022. "Efficient reliability analysis using prediction-oriented active sparse polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Zhan, Hongyou & Xiao, Ning-Cong & Ji, Yuxiang, 2022. "An adaptive parallel learning dependent Kriging model for small failure probability problems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Zhou, Tong & Peng, Yongbo, 2022. "Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Xiao, Ning-Cong & Yuan, Kai & Zhan, Hongyou, 2022. "System reliability analysis based on dependent Kriging predictions and parallel learning strategy," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Li, Luxin & Chen, Guohai & Fang, Mingxuan & Yang, Dixiong, 2021. "Reliability analysis of structures with multimodal distributions based on direct probability integral method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Zhou, Tong & Peng, Yongbo, 2022. "Ensemble of metamodels-assisted probability density evolution method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Tong & Guo, Tong & Dong, You & Yang, Fan & Frangopol, Dan M., 2024. "Look-ahead active learning reliability analysis based on stepwise margin reduction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Wu, Yongxin & Wang, Juncheng & Cheng, Jialiang & Yang, Shangchuan, 2024. "Dimension-Reduction Spectral Representation of Soil Spatial Variability and Its Application in the Efficient Reliability Analysis of Seismic Response in Tunnels," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Tong & Guo, Tong & Dong, You & Yang, Fan & Frangopol, Dan M., 2024. "Look-ahead active learning reliability analysis based on stepwise margin reduction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Xin, Fukang & Wang, Pan & Wang, Qirui & Li, Lei & Cheng, Lei & Lei, Huajin & Ma, Fangyun, 2024. "Parallel adaptive ensemble of metamodels combined with hypersphere sampling for rare failure events," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Meng, Yuan & Zhang, Dequan & Shi, Baojun & Wang, Dapeng & Wang, Fang, 2024. "An active learning Kriging model with approximating parallel strategy for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Dong, Manman & Cheng, Yongbo & Wan, Liangqi, 2024. "A new adaptive multi-kernel relevance vector regression for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Yu, Shui & Ren, Yuyao & Wu, Xiao & Guo, Peng & Li, Yun, 2024. "Dynamic pruning-based Bayesian support vector regression for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Dang, Chao & Wei, Pengfei & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2022. "Parallel adaptive Bayesian quadrature for rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Li, Jin-Yang & Lu, Jubin & Zhou, Hao, 2023. "Reliability analysis of structures with inerter-based isolation layer under stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Das, Sourav & Tesfamariam, Solomon, 2024. "Reliability assessment of stochastic dynamical systems using physics informed neural network based PDEM," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2024. "A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Yu, Shui & Wu, Xiao & Zhao, Dongyu & Li, Yun, 2024. "A two-level surrogate framework for demand-objective time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    13. Wang, Lei & Hu, Zhuo & Dang, Chao & Beer, Michael, 2024. "Refined parallel adaptive Bayesian quadrature for estimating small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Yuan, Kai & Sui, Xi & Zhang, Shijie & Xiao, Ning-cong & Hu, Jinghan, 2024. "AK-SYS-IE: A novel adaptive Kriging-based method for system reliability assessment combining information entropy," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    15. Li, Chen & Wen, Jiong-Ran & Wan, Jing & Taylan, Osman & Fei, Cheng-Wei, 2024. "Adaptive directed support vector machine method for the reliability evaluation of aeroengine structure," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    16. Zhou, Jin & Li, Jie, 2023. "IE-AK: A novel adaptive sampling strategy based on information entropy for Kriging in metamodel-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Chen, Zequan & He, Jialong & Li, Guofa & Yang, Zhaojun & Wang, Tianzhe & Du, Xuejiao, 2024. "Fast convergence strategy for adaptive structural reliability analysis based on kriging believer criterion and importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Xu, Jun & Song, Jinheng & Yu, Quanfu & Kong, Fan, 2023. "Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Song, Jingwen & Cui, Yifan & Wei, Pengfei & Valdebenito, Marcos A. & Zhang, Weihong, 2024. "Constrained Bayesian optimization algorithms for estimating design points in structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023002260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.