IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v246y2024ics0951832024001388.html
   My bibliography  Save this article

Adaptive directed support vector machine method for the reliability evaluation of aeroengine structure

Author

Listed:
  • Li, Chen
  • Wen, Jiong-Ran
  • Wan, Jing
  • Taylan, Osman
  • Fei, Cheng-Wei

Abstract

Machine learning methods have been widely applied to structural reliability analysis, due to the excellent performance in modeling precision and efficiency. In this paper, an adaptive directed support vector machine model (ADSVM) is proposed by integrating the adaptive sampling technology (AST) and the developed directed support vector machine (DSVM), to improve the efficiency and accuracy of turbine blade reliability analysis. In the developed method, the AST is adopted to extract high quality samples, in respect of distributed probability density and the distances between sample values and response values. The DSVM was developed by introducing the penalty coefficients for all the slack variables, to improve the modeling accuracy of SVM approach. One numerical example and the reliability analysis of aeroengine high-pressure turbine blade were performed to validate the developed methods. As illustrated in this numerical investigation, the modeling precision of DSVM is improved by alleviating the lag effect of support vector regression. From the comparison of methods, it is demonstrated that the ADSVM has higher accuracy, efficiency and stability in reliability simulations, which are improved by ∼20 % and ∼46.2 %, respectively. The main efforts of this study are to propose a promising approach, ADSVM, for the reliability analysis of complex structures besides turbine blades, which hold the academical significance in enriching and developing mechanical reliability theory.

Suggested Citation

  • Li, Chen & Wen, Jiong-Ran & Wan, Jing & Taylan, Osman & Fei, Cheng-Wei, 2024. "Adaptive directed support vector machine method for the reliability evaluation of aeroengine structure," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001388
    DOI: 10.1016/j.ress.2024.110064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    3. Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Cheng, Kai & Lu, Zhenzhou, 2021. "Adaptive Bayesian support vector regression model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    6. Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
    7. Lee, Juseong & Mitici, Mihaela, 2022. "Multi-objective design of aircraft maintenance using Gaussian process learning and adaptive sampling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Chen, Zequan & Li, Guofa & He, Jialong & Yang, Zhaojun & Wang, Jili, 2022. "A new parallel adaptive structural reliability analysis method based on importance sampling and K-medoids clustering," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Musa Yilmaz, 2024. "Comparative Analysis of Hybrid Maximum Power Point Tracking Algorithms Using Voltage Scanning and Perturb and Observe Methods for Photovoltaic Systems under Partial Shading Conditions," Sustainability, MDPI, vol. 16(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Shui & Ren, Yuyao & Wu, Xiao & Guo, Peng & Li, Yun, 2024. "Dynamic pruning-based Bayesian support vector regression for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Dang, Chao & Wei, Pengfei & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2022. "Parallel adaptive Bayesian quadrature for rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Chen, Zequan & He, Jialong & Li, Guofa & Yang, Zhaojun & Wang, Tianzhe & Du, Xuejiao, 2024. "Fast convergence strategy for adaptive structural reliability analysis based on kriging believer criterion and importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Li, Guosheng & Ma, Shuaichao & Zhang, Dequan & Yang, Leping & Zhang, Weihua & Wu, Zeping, 2024. "An efficient sequential anisotropic RBF reliability analysis method with fast cross-validation and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Xin, Fukang & Wang, Pan & Wang, Qirui & Li, Lei & Cheng, Lei & Lei, Huajin & Ma, Fangyun, 2024. "Parallel adaptive ensemble of metamodels combined with hypersphere sampling for rare failure events," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    6. Chen, Zequan & Li, Guofa & He, Jialong & Yang, Zhaojun & Wang, Jili, 2022. "Adaptive structural reliability analysis method based on confidence interval squeezing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Zhou, Tong & Peng, Yongbo, 2022. "Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Zhao, Enyong & Wang, Qihan & Alamdari, Mehrisadat Makki & Gao, Wei, 2023. "Advanced virtual model assisted most probable point capturing method for engineering structures," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    11. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Chen, Jiahui & Chen, Zhicheng & Xu, Yang & Li, Hui, 2021. "Efficient reliability analysis combining kriging and subset simulation with two-stage convergence criterion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Wang, Lei & Hu, Zhuo & Dang, Chao & Beer, Michael, 2024. "Refined parallel adaptive Bayesian quadrature for estimating small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Zhou, Jin & Li, Jie, 2023. "IE-AK: A novel adaptive sampling strategy based on information entropy for Kriging in metamodel-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    15. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2020. "A system active learning Kriging method for system reliability-based design optimization with a multiple response model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    16. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Chen, Zequan & Li, Guofa & He, Jialong & Yang, Zhaojun & Wang, Jili, 2022. "A new parallel adaptive structural reliability analysis method based on importance sampling and K-medoids clustering," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    18. Zhou, Tong & Peng, Yongbo, 2022. "Ensemble of metamodels-assisted probability density evolution method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Haoyuan, Shen & Yizhong, Ma & Chenglong, Lin & Jian, Zhou & Lijun, Liu, 2023. "Hierarchical Bayesian support vector regression with model parameter calibration for reliability modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.