IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006549.html
   My bibliography  Save this article

PLIC-FSR-SYS: System reliability analysis based on parallel learning of influential components with filtered sample region

Author

Listed:
  • Zhao, Qiangqiang
  • Duan, Jinyan
  • Jia, Kang
  • Hong, Jun

Abstract

In practical engineering, system reliability analysis is highly concerned since many structures or products have multiple failure modes. Accordingly, this paper develops an innovative method for system reliability analysis by parallel learning of influential component limit-state functions with filtered sample region (PLIC-FSR-SYS) based on Kriging modeling. Different from the traditional adaptive learning methods that train only one component in each iteration when constructing the surrogate of the composite limit-state function, a new strategy is explored to adaptively identify several important components in one iteration so as to train them simultaneously. In the meanwhile, a filtering formula is explored to determine the fatal region so that the unimportant samples can be removed to further accelerate the training process. Based on the join forces of parallel learning of influential components and avoiding the training at unimportant samples, PLIC-FSR-SYS can achieve a fairly efficient system reliability analysis with multiple failure modes. Finally, four different case studies, including an engineering application to the ultra-voltage on-load tap-changer, are conducted to prove the effectiveness of the proposed method. The results indicate that compared to traditional adaptive learning methods, the proposed method makes a significant efficiency improvement for system reliability analysis with multiple failure modes.

Suggested Citation

  • Zhao, Qiangqiang & Duan, Jinyan & Jia, Kang & Hong, Jun, 2025. "PLIC-FSR-SYS: System reliability analysis based on parallel learning of influential components with filtered sample region," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006549
    DOI: 10.1016/j.ress.2024.110583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.