IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v207y2021ics0951832020308279.html
   My bibliography  Save this article

Optimal multi-type inspection policy for systems with imperfect online monitoring

Author

Listed:
  • Liu, Xingchen
  • Sun, Qiuzhuang
  • Ye, Zhi-Sheng
  • Yildirim, Murat

Abstract

Both online monitoring and manual inspection are widely used in identifying a system’s health state, based on which proper preventive maintenance (PM) can be carried out. The existing maintenance optimization models typically consider only online monitoring or a single type of inspection and assume they can perfectly reveal the system’s state. However, the information provided by online monitoring is never perfect, and it needs to be combined with the inspection to identify the system’s health state. Besides, there are usually many types of inspections with different costs and detecting capabilities in real applications. It is hence equally important to decide on when operators should make an inspection and which kind of inspection should be performed based on the information from online monitoring. In this paper, we formulate the multi-type inspection decision-making problem within the partially observable Markov decision process (POMDP) framework. We establish some structural properties for the optimal multi-type inspection policy. The value iteration and the λ-minimization algorithm are combined to obtain the optimal solution. A case study is provided to illustrate the optimal inspection policy and its advantage over some existing policies.

Suggested Citation

  • Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308279
    DOI: 10.1016/j.ress.2020.107335
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020308279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    2. Li, Y.G. & Nilkitsaranont, P., 2009. "Gas turbine performance prognostic for condition-based maintenance," Applied Energy, Elsevier, vol. 86(10), pages 2152-2161, October.
    3. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    4. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    5. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    6. Qiuzhuang Sun & Zhi-Sheng Ye & Xiaoyan Zhu, 2020. "Managing component degradation in series systems for balancing degradation through reallocation and maintenance," IISE Transactions, Taylor & Francis Journals, vol. 52(7), pages 797-810, July.
    7. Le, Minh Duc & Tan, Cher Ming, 2013. "Optimal maintenance strategy of deteriorating system under imperfect maintenance and inspection using mixed inspectionscheduling," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 21-29.
    8. James E. Eckles, 1968. "Optimum Maintenance with Incomplete Information," Operations Research, INFORMS, vol. 16(5), pages 1058-1067, October.
    9. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    10. Xiao Liu & Jingrui Li & Khalifa Al-Khalifa & Abdelmagid Hamouda & David Coit & Elsayed Elsayed, 2013. "Condition-based maintenance for continuously monitored degrading systems with multiple failure modes," IISE Transactions, Taylor & Francis Journals, vol. 45(4), pages 422-435.
    11. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    12. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    13. Nguyen, Khanh T. P. & Do, Phuc & Huynh, Khac Tuan & Bérenguer, Christophe & Grall, Antoine, 2019. "Joint optimization of monitoring quality and replacement decisions in condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 177-195.
    14. Havinga, Maik J.A. & de Jonge, Bram, 2020. "Condition-based maintenance in the cyclic patrolling repairman problem," International Journal of Production Economics, Elsevier, vol. 222(C).
    15. Liu, Bin & Wu, Shaomin & Xie, Min & Kuo, Way, 2017. "A condition-based maintenance policy for degrading systems with age- and state-dependent operating cost," European Journal of Operational Research, Elsevier, vol. 263(3), pages 879-887.
    16. Songhua Hao & Jun Yang & Christophe Bérenguer, 2020. "Condition-based maintenance with imperfect inspections for continuous degradation processes," Post-Print hal-02860252, HAL.
    17. Michael Jong Kim & Viliam Makis, 2013. "Joint Optimization of Sampling and Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 61(3), pages 777-790, June.
    18. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    19. Wu, Shaomin & Castro, Inma T., 2020. "Maintenance policy for a system with a weighted linear combination of degradation processes," European Journal of Operational Research, Elsevier, vol. 280(1), pages 124-133.
    20. Akram Khaleghei & Viliam Makis, 2016. "Reliability estimation of a system subject to condition monitoring with two dependent failure modes," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 1058-1071, November.
    21. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    22. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    23. Tian, Zhigang & Liao, Haitao, 2011. "Condition based maintenance optimization for multi-component systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 581-589.
    24. Dieulle, L. & Berenguer, C. & Grall, A. & Roussignol, M., 2003. "Sequential condition-based maintenance scheduling for a deteriorating system," European Journal of Operational Research, Elsevier, vol. 150(2), pages 451-461, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Meng, Xueyu & Han, Sijie & Wu, Leilei & Si, Shubin & Cai, Zhiqiang, 2022. "Analysis of epidemic vaccination strategies by node importance and evolutionary game on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Guo, Chunhui & Liang, Zhenglin, 2022. "A predictive Markov decision process for optimizing inspection and maintenance strategies of partially observable multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Dinh, Duc-Hanh & Do, Phuc & Hoang, Van-Thanh & Vo, Nhu-Thanh & Bang, Tao Quang, 2024. "A predictive maintenance policy for manufacturing systems considering degradation of health monitoring device," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    7. Karabağ, Oktay & Bulut, Önder & Toy, Ayhan Özgür & Fadıloğlu, Mehmet Murat, 2024. "An efficient procedure for optimal maintenance intervention in partially observable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Kim, Seokgoo & Choi, Joo-Ho & Kim, Nam Ho, 2022. "Inspection schedule for prognostics with uncertainty management," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Alberti, A.R. & Neto, W.A. Ferreira & Cavalcante, C.A.V. & Santos, A.C.J., 2022. "Modelling a flexible two-phase inspection-maintenance policy for safety-critical systems considering revised and non-revised inspections," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Michiel A. J. uit het Broek & Ruud H. Teunter & Bram de Jonge & Jasper Veldman & Nicky D. Van Foreest, 2020. "Condition-Based Production Planning: Adjusting Production Rates to Balance Output and Failure Risk," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 792-811, July.
    4. Cai, Yue & Teunter, Ruud H. & de Jonge, Bram, 2023. "A data-driven approach for condition-based maintenance optimization," European Journal of Operational Research, Elsevier, vol. 311(2), pages 730-738.
    5. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    8. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    9. Ece Zeliha Demirci & Joachim Arts & Geert-Jan Van Houtum, 2022. "A restless bandit approach for capacitated condition based maintenance scheduling," DEM Discussion Paper Series 22-01, Department of Economics at the University of Luxembourg.
    10. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    11. uit het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and condition-based production optimization," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    13. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    14. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    15. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    17. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    19. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Lam, Ji Ye Janet & Banjevic, Dragan, 2015. "A myopic policy for optimal inspection scheduling for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.