IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v311y2023i2p730-738.html
   My bibliography  Save this article

A data-driven approach for condition-based maintenance optimization

Author

Listed:
  • Cai, Yue
  • Teunter, Ruud H.
  • de Jonge, Bram

Abstract

Developments in sensor techniques enable the continuous monitoring of the health of an operating system. The resulting condition data provides an opportunity for better prediction of failures and thereby for improving maintenance decisions. In this study, we consider condition-based maintenance for a single unit with an unknown, non-decreasing deterioration process and unknown failure behavior. Building on, but different from the existing maintenance optimization literature, we present the first fully data-driven approach, where the condition threshold triggering maintenance is based purely on past condition data and failures. Numerical results for a gamma deterioration process show that the maintenance threshold resulting from our data-driven approach converges to the optimal threshold. The threshold is set higher during the initial runs-to-failure, and this helps to explore the deterioration process. An encouraging result is that the convergence is especially fast during the first few runs-to-failure so that the expected cost rate quickly converges to the minimum cost rate.

Suggested Citation

  • Cai, Yue & Teunter, Ruud H. & de Jonge, Bram, 2023. "A data-driven approach for condition-based maintenance optimization," European Journal of Operational Research, Elsevier, vol. 311(2), pages 730-738.
  • Handle: RePEc:eee:ejores:v:311:y:2023:i:2:p:730-738
    DOI: 10.1016/j.ejor.2023.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723003478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    2. Dursun, İpek & Akçay, Alp & van Houtum, Geert-Jan, 2022. "Age-based maintenance under population heterogeneity: Optimal exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1007-1020.
    3. Mercier, Sophie & Pham, Hai Ha, 2012. "A preventive maintenance policy for a continuously monitored system with correlated wear indicators," European Journal of Operational Research, Elsevier, vol. 222(2), pages 263-272.
    4. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    5. de Jonge, Bram, 2019. "Discretizing continuous-time continuous-state deterioration processes, with an application to condition-based maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 1-5.
    6. Nguyen, Khanh T. P. & Do, Phuc & Huynh, Khac Tuan & Bérenguer, Christophe & Grall, Antoine, 2019. "Joint optimization of monitoring quality and replacement decisions in condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 177-195.
    7. Syan, Chanan S. & Ramsoobag, Geeta, 2019. "Maintenance applications of multi-criteria optimization: A review," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    8. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    9. Liu, Bin & Pandey, Mahesh D. & Wang, Xiaolin & Zhao, Xiujie, 2021. "A finite-horizon condition-based maintenance policy for a two-unit system with dependent degradation processes," European Journal of Operational Research, Elsevier, vol. 295(2), pages 705-717.
    10. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    11. Liu, Bin & Wu, Shaomin & Xie, Min & Kuo, Way, 2017. "A condition-based maintenance policy for degrading systems with age- and state-dependent operating cost," European Journal of Operational Research, Elsevier, vol. 263(3), pages 879-887.
    12. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    13. Guida, M. & Pulcini, G., 2013. "The inverse Gamma process: A family of continuous stochastic models for describing state-dependent deterioration phenomena," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 72-79.
    14. Topan, E. & Eruguz, A.S. & Ma, W. & van der Heijden, M.C. & Dekker, R., 2020. "A review of operational spare parts service logistics in service control towers," European Journal of Operational Research, Elsevier, vol. 282(2), pages 401-414.
    15. Fang, Guanqi & Pan, Rong & Wang, Yukun, 2022. "Inverse Gaussian processes with correlated random effects for multivariate degradation modeling," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1177-1193.
    16. Kiesmüller, G.P. & Sachs, F.E., 2020. "Spare parts or buffer? How to design a transfer line with unreliable machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 121-134.
    17. Alaa H. Elwany & Nagi Z. Gebraeel & Lisa M. Maillart, 2011. "Structured Replacement Policies for Components with Complex Degradation Processes and Dedicated Sensors," Operations Research, INFORMS, vol. 59(3), pages 684-695, June.
    18. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    19. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    20. Chiel van Oosterom & Hao Peng & Geert-Jan van Houtum, 2017. "Maintenance optimization for a Markovian deteriorating system with population heterogeneity," IISE Transactions, Taylor & Francis Journals, vol. 49(1), pages 96-109, January.
    21. Fouladirad, Mitra & Grall, Antoine & Dieulle, Laurence, 2008. "On the use of on-line detection for maintenance of gradually deteriorating systems," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1814-1820.
    22. Flage, Roger & Coit, David W. & Luxhøj, James T. & Aven, Terje, 2012. "Safety constraints applied to an adaptive Bayesian condition-based maintenance optimization model," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 16-26.
    23. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    24. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theogan Logan Pillay & Akshay Kumar Saha, 2024. "A Review of Metaheuristic Optimization Techniques for Effective Energy Conservation in Buildings," Energies, MDPI, vol. 17(7), pages 1-37, March.
    2. Wei, Shuang & Liu, Weihua & Choi, Tsan-Ming & Dong, Jing-xin & Long, Shangsong, 2024. "The influence of key components and digital technologies on manufacturer's choice of innovation strategy," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1210-1220.
    3. Pedro Nunes & Eugénio Rocha & José Santos, 2024. "Adaptive Framework for Maintenance Scheduling Based on Dynamic Preventive Intervals and Remaining Useful Life Estimation," Future Internet, MDPI, vol. 16(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    3. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Mosayebi Omshi, E. & Shemehsavar, S. & Grall, A., 2024. "An intelligent maintenance policy for a latent degradation system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Giorgio, Massimiliano & Pulcini, Gianpaolo, 2024. "The effect of model misspecification of the bounded transformed gamma process on maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    7. Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    9. Zhao, Xiujie & Liu, Bin & Xu, Jianyu & Wang, Xiao-Lin, 2023. "Imperfect maintenance policies for warranted products under stochastic performance degradation," European Journal of Operational Research, Elsevier, vol. 308(1), pages 150-165.
    10. Zheng, Rui & Wang, Jingjing & Zhang, Yingzhi, 2023. "A hybrid repair-replacement policy in the proportional hazards model," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1011-1021.
    11. MERCIER, Sophie & CASTRO, I.T., 2019. "Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system," European Journal of Operational Research, Elsevier, vol. 273(1), pages 237-248.
    12. de Jonge, Bram, 2019. "Discretizing continuous-time continuous-state deterioration processes, with an application to condition-based maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 1-5.
    13. Lee, Juseong & Mitici, Mihaela, 2022. "Multi-objective design of aircraft maintenance using Gaussian process learning and adaptive sampling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    14. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    17. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    19. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    20. Michiel A. J. uit het Broek & Ruud H. Teunter & Bram de Jonge & Jasper Veldman & Nicky D. Van Foreest, 2020. "Condition-Based Production Planning: Adjusting Production Rates to Balance Output and Failure Risk," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 792-811, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:311:y:2023:i:2:p:730-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.