IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007597.html
   My bibliography  Save this article

Joint optimization of performance-based contracting, condition-based maintenance and spare parts inventory for degrading production systems

Author

Listed:
  • Wang, Yukun
  • Gao, Weizheng
  • Li, Xiaopeng
  • Liu, Yiliu

Abstract

As a novel supporting approach, performance-based contracting (PBC) ties the service supplier’s compensation to the performance outcome of the system owned by the customer. It enables the service supplier to implement an effective maintenance and spare parts inventory policy so as to improve system performance. In this paper, we propose a principal–agent modeling framework for deteriorating production systems operating under PBC, with the objective of maximizing the expected utilities of both stakeholders. The customer (principal) offers PBC with a fixed payment plus performance incentive form to the service supplier (agent), who in turn implements a condition-based maintenance (CBM) policy based on the system prognostic condition at periodic inspections, and sets an investment level of spare parts inventory. Considering the partial observability of the service supplier’s actions, the optimal combination of performance incentive in PBC provided by the customer, and the joint CBM and spare parts inventory policy implemented by the service supplier, are determined through a two-stage and heuristic approach. Finally, a numerical example and sensitivity analysis based on a real-world scenario are presented to illustrate and verify the applicability of the proposed model.

Suggested Citation

  • Wang, Yukun & Gao, Weizheng & Li, Xiaopeng & Liu, Yiliu, 2024. "Joint optimization of performance-based contracting, condition-based maintenance and spare parts inventory for degrading production systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007597
    DOI: 10.1016/j.ress.2023.109845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Tongdan & Tian, Zhigang & Xie, Min, 2015. "A game-theoretical approach for optimizing maintenance, spares and service capacity in performance contracting," International Journal of Production Economics, Elsevier, vol. 161(C), pages 31-43.
    2. Sang-Hyun Kim & Morris A. Cohen & Serguei Netessine, 2007. "Performance Contracting in After-Sales Service Supply Chains," Management Science, INFORMS, vol. 53(12), pages 1843-1858, December.
    3. Wang, Jun & Zhu, Xiaoyan, 2021. "Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 514-529.
    4. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
    5. Bautista, Lucía & Castro, Inma T. & Landesa, Luis, 2022. "Condition-based maintenance for a system subject to multiple degradation processes with stochastic arrival intensity," European Journal of Operational Research, Elsevier, vol. 302(2), pages 560-574.
    6. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Liu, Bin & Pandey, Mahesh D. & Wang, Xiaolin & Zhao, Xiujie, 2021. "A finite-horizon condition-based maintenance policy for a two-unit system with dependent degradation processes," European Journal of Operational Research, Elsevier, vol. 295(2), pages 705-717.
    8. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    9. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    10. Shi, Yue & Zhu, Weihang & Xiang, Yisha & Feng, Qianmei, 2020. "Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    11. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    12. Zhicheng Zhu & Yisha Xiang, 2021. "Condition-based maintenance for multi-component systems: Modeling, structural properties, and algorithms," IISE Transactions, Taylor & Francis Journals, vol. 53(1), pages 88-100, January.
    13. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2017. "Joint condition-based maintenance and inventory optimization for systems with multiple components," European Journal of Operational Research, Elsevier, vol. 257(1), pages 209-222.
    14. Huynh, K.T. & Vu, H.C. & Nguyen, T.D. & Ho, A.C., 2022. "A predictive maintenance model for k-out-of-n:F continuously deteriorating systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    15. Zhou, Xiaojun & Xi, Lifeng & Lee, Jay, 2007. "Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 530-534.
    16. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    17. Van Horenbeek, Adriaan & Buré, Jasmine & Cattrysse, Dirk & Pintelon, Liliane & Vansteenwegen, Pieter, 2013. "Joint maintenance and inventory optimization systems: A review," International Journal of Production Economics, Elsevier, vol. 143(2), pages 499-508.
    18. Li, Heping & Zhu, Wenjin & Dieulle, Laurence & Deloux, Estelle, 2022. "Condition-based maintenance strategies for stochastically dependent systems using Nested Lévy copulas," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Wang, Wenbin, 2012. "A stochastic model for joint spare parts inventory and planned maintenance optimisation," European Journal of Operational Research, Elsevier, vol. 216(1), pages 127-139.
    20. Van Horenbeek, Adriaan & Pintelon, Liliane, 2013. "A dynamic predictive maintenance policy for complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 39-50.
    21. Zhang, Xiaohong & Liao, Haitao & Zeng, Jianchao & Shi, Guannan & Zhao, Bing, 2021. "Optimal Condition-based Opportunistic Maintenance and Spare Parts Provisioning for a Two-unit System using a State Space Partitioning Approach," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    22. Zheng, Meimei & Ye, Hongqing & Wang, Dong & Pan, Ershun, 2021. "Joint Optimization of Condition-Based Maintenance and Spare Parts Orders for Multi-Unit Systems with Dual Sourcing," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    23. D Nowicki & U D Kumar & H J Steudel & D Verma, 2008. "Spares provisioning under performance-based logistics contract: profit-centric approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 342-352, March.
    24. de Pater, Ingeborg & Mitici, Mihaela, 2021. "Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    25. Kostas Selviaridis & Finn Wynstra, 2015. "Performance-based contracting: a literature review and future research directions," International Journal of Production Research, Taylor & Francis Journals, vol. 53(12), pages 3505-3540, June.
    26. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Xiaojun & Cui, Lirong & Wang, Ruiting, 2024. "Non-renewable warranty cost analysis for dependent series configuration with distinct warranty periods," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Zhang, Wenyu & Gan, Jie & He, Shuguang & Li, Ting & He, Zhen, 2024. "An integrated framework of preventive maintenance and task scheduling for repairable multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Zhang, Yanping & Cai, Baoping & Zhao, Yixin & Gao, Chuntan & Liu, Yiliu & Gao, Lei & Liu, Guijie, 2024. "Joint multi-objective optimization method for emergency maintenance and condition-based maintenance: Subsea control system as a case study," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Huynh, K.T. & Vu, H.C. & Nguyen, T.D. & Ho, A.C., 2022. "A predictive maintenance model for k-out-of-n:F continuously deteriorating systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Zhang, Wenyu & Zhang, Xiaohong & He, Shuguang & Zhao, Xing & He, Zhen, 2024. "Optimal condition-based maintenance policy for multi-component repairable systems with economic dependence in a finite-horizon," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Yujie Zhang & Yukun Wang & Xiaopeng Li & Yiliu Liu & Weizheng Gao, 2024. "Condition-based maintenance optimization for deteriorating systems considering performance-based contracting and destructive inspections," Journal of Risk and Reliability, , vol. 238(2), pages 247-259, April.
    6. Zheng, Meimei & Su, Zhiyun & Wang, Dong & Pan, Ershun, 2024. "Joint maintenance and spare part ordering from multiple suppliers for multicomponent systems using a deep reinforcement learning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Mosayebi Omshi, E. & Shemehsavar, S. & Grall, A., 2024. "An intelligent maintenance policy for a latent degradation system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Xia, Tangbin & Cao, Lei & Xu, Yuhui & Zhang, Kaigan & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2024. "Multi-level maintenance and inventory joint optimization for a k-out-of-n hyper-system considering the selection of suppliers with incentive discount policies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Zheng, Meimei & Lin, Jie & Xia, Tangbin & Liu, Yu & Pan, Ershun, 2023. "Joint condition-based maintenance and spare provisioning policy for a K-out-of-N system with failures during inspection intervals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1220-1232.
    11. Mitici, Mihaela & de Pater, Ingeborg & Barros, Anne & Zeng, Zhiguo, 2023. "Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Shi, Yue & Zhu, Weihang & Xiang, Yisha & Feng, Qianmei, 2020. "Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    13. Zhang, Wenyu & Gan, Jie & He, Shuguang & Li, Ting & He, Zhen, 2024. "An integrated framework of preventive maintenance and task scheduling for repairable multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    14. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.
    15. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    16. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Karabağ, Oktay & Bulut, Önder & Toy, Ayhan Özgür & Fadıloğlu, Mehmet Murat, 2024. "An efficient procedure for optimal maintenance intervention in partially observable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    18. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    19. Gan, Shuyuan & Hu, Hengheng & Coit, David W., 2023. "Maintenance optimization considering the mutual dependence of the environment and system with decreasing effects of imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Zhang, Xiaohong & Liao, Haitao & Zeng, Jianchao & Shi, Guannan & Zhao, Bing, 2021. "Optimal Condition-based Opportunistic Maintenance and Spare Parts Provisioning for a Two-unit System using a State Space Partitioning Approach," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.