IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v302y2022i2p560-574.html
   My bibliography  Save this article

Condition-based maintenance for a system subject to multiple degradation processes with stochastic arrival intensity

Author

Listed:
  • Bautista, Lucía
  • Castro, Inma T.
  • Landesa, Luis

Abstract

In this work, a system subject to different deterioration processes is analysed. The arrival of the degradation processes to the system is modelled using a shot-noise Cox process. The degradation processes grow according to an homogeneous gamma process. The system fails when a degradation process exceeds a failure threshold. The combined process of initiation and growth of the degradation processes is modelled and the system reliability is obtained. Heterogeneities are also integrated in the model assuming that the inverse of the scale parameter follows a uniform distribution. A maintenance strategy is implemented in this system and the state of the system is checked in inspection times. If the system is working at inspection time, a preventive replacement is performed if the deterioration level of a degradation process exceeds a certain threshold. A corrective replacement is performed if the system is down at inspection time. Under this maintenance strategy, the expected cost rate is obtained. Sensitivity analysis on the main parameters of the gamma process is performed.

Suggested Citation

  • Bautista, Lucía & Castro, Inma T. & Landesa, Luis, 2022. "Condition-based maintenance for a system subject to multiple degradation processes with stochastic arrival intensity," European Journal of Operational Research, Elsevier, vol. 302(2), pages 560-574.
  • Handle: RePEc:eee:ejores:v:302:y:2022:i:2:p:560-574
    DOI: 10.1016/j.ejor.2022.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722000066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
    2. Huynh, K.T. & Grall, A. & Bérenguer, C., 2017. "Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decision-making of systems subject to stress corrosion cracking," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 237-254.
    3. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    4. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    5. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Bivariate preventive maintenance of systems with lifetimes dependent on a random shock process," European Journal of Operational Research, Elsevier, vol. 266(1), pages 122-134.
    6. J. Chen & A. G. Hawkes & E. Scalas & M. Trinh, 2018. "Performance of information criteria for selection of Hawkes process models of financial data," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 225-235, February.
    7. Laurent Bordes & Sophie Mercier & Emmanuel Remy & Emilie Dautrême, 2016. "Partially observed competing degradation processes: modeling and inference," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(5), pages 677-696, September.
    8. Wu, Shaomin & Castro, Inma T., 2020. "Maintenance policy for a system with a weighted linear combination of degradation processes," European Journal of Operational Research, Elsevier, vol. 280(1), pages 124-133.
    9. Cha, Ji Hwan & Finkelstein, Maxim, 2018. "On information-based residual lifetime in survival models with delayed failures," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 209-216.
    10. Kuniewski, Sebastian P. & van der Weide, Johannes A.M. & van Noortwijk, Jan M., 2009. "Sampling inspection for the evaluation of time-dependent reliability of deteriorating systems under imperfect defect detection," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1480-1490.
    11. I.T. Castro & N.C. Caballé & C.J. Pérez, 2015. "A condition-based maintenance for a system subject to multiple degradation processes and external shocks," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(9), pages 1692-1704, July.
    12. Liu, Bin & Zhao, Xiujie & Liu, Guoquan & Liu, Yiqi, 2020. "Life cycle cost analysis considering multiple dependent degradation processes and environmental influence," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    13. Huynh, K.T., 2020. "Modeling past-dependent partial repairs for condition-based maintenance of continuously deteriorating systems," European Journal of Operational Research, Elsevier, vol. 280(1), pages 152-163.
    14. Ji Hwan Cha & Maxim Finkelstein, 2018. "On a New Shot Noise Process and the Induced Survival Model," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 897-917, September.
    15. Austin J. Lemoine & Michael L. Wenocur, 1985. "On failure modeling," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 32(3), pages 497-508, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Shaomin & Wu, Di & Peng, Rui, 2023. "Considering greenhouse gas emissions in maintenance optimisation," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1135-1145.
    2. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    3. Zheng, Meimei & Lin, Jie & Xia, Tangbin & Liu, Yu & Pan, Ershun, 2023. "Joint condition-based maintenance and spare provisioning policy for a K-out-of-N system with failures during inspection intervals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1220-1232.
    4. Yujie Zhang & Yukun Wang & Xiaopeng Li & Yiliu Liu & Weizheng Gao, 2024. "Condition-based maintenance optimization for deteriorating systems considering performance-based contracting and destructive inspections," Journal of Risk and Reliability, , vol. 238(2), pages 247-259, April.
    5. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Wang, Yukun & Gao, Weizheng & Li, Xiaopeng & Liu, Yiliu, 2024. "Joint optimization of performance-based contracting, condition-based maintenance and spare parts inventory for degrading production systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Wu, Bin & Zhang, Xiaohong & Shi, Hui & Zeng, Jianchao, 2024. "Failure mode division and remaining useful life prognostics of multi-indicator systems with multi-fault," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    3. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    4. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    5. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Finkelstein, Maxim & Cha, Ji Hwan & Bedford, Tim, 2023. "Optimal preventive maintenance strategy for populations of systems that generate outputs," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Zhang, Wenyu & Zhang, Xiaohong & He, Shuguang & Zhao, Xing & He, Zhen, 2024. "Optimal condition-based maintenance policy for multi-component repairable systems with economic dependence in a finite-horizon," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Huynh, K.T. & Vu, H.C. & Nguyen, T.D. & Ho, A.C., 2022. "A predictive maintenance model for k-out-of-n:F continuously deteriorating systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. MERCIER, Sophie & CASTRO, I.T., 2019. "Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system," European Journal of Operational Research, Elsevier, vol. 273(1), pages 237-248.
    10. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    11. Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    12. Hu, Jiawen & Shen, Jingyuan & Shen, Lijuan, 2020. "Opportunistic maintenance for two-component series systems subject to dependent degradation and shock," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    13. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    14. Liu, Bin & Liang, Zhenglin & Parlikad, Ajith Kumar & Xie, Min & Kuo, Way, 2017. "Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 200-209.
    15. Wang, Naichao & Hu, Jiawen & Ma, Lin & Xiao, Boping & Liao, Haitao, 2020. "Availability Analysis and Preventive Maintenance Planning for Systems with General Time Distributions," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Liu, Qiannan & Ma, Lin & Wang, Naichao & Chen, Ankang & Jiang, Qihang, 2022. "A condition-based maintenance model considering multiple maintenance effects on the dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    17. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Wang, Liying & Song, Yushuang & Zhang, Wenhua & Ling, Xiaoliang, 2023. "Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Cheng, Yao & Wei, Yian & Liao, Haitao, 2022. "Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    20. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:302:y:2022:i:2:p:560-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.