IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v567y2021ics0378437120309663.html
   My bibliography  Save this article

Hidden Markov models with binary dependence

Author

Listed:
  • Danisman, Ozgur
  • Uzunoglu Kocer, Umay

Abstract

Hidden Markov models are widely used to model the probabilistic structures with latent variables. The main assumption of hidden Markov models is that; observation symbols are conditionally independent and identically distributed random variables. There exist some cases where this assumption may not be valid in practice. That is, an observation symbol that occurs in the current state may depend on the previous observation symbol that occurred in the previous state. In this study, a new type of hidden Markov model is introduced in which the current pair of hidden state-emitted observation symbol and the previous pair of those have a first-order Markov dependency. The proposed model is capable of capturing a possible first-order Markov dependency between the last and the previous steps of the system. In addition, it provides a better representation for the appropriate real-life problems where, if the observation symbols have conditional dependence. It is an alternative model to the classical hidden Markov model for revealing the Markov dependency between the current and the previous binary information of the system. An experimental study is conducted to show the performance of the proposed model compared to the classical hidden Markov model. Besides, two different case studies are conducted namely the occurrences of strong earthquakes and daily stock prices are modeled with both the classical hidden Markov model and the proposed model, and the results are compared.

Suggested Citation

  • Danisman, Ozgur & Uzunoglu Kocer, Umay, 2021. "Hidden Markov models with binary dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
  • Handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309663
    DOI: 10.1016/j.physa.2020.125668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309663
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyet Nguyen, 2018. "Hidden Markov Model for Stock Trading," IJFS, MDPI, vol. 6(2), pages 1-17, March.
    2. Luca De Angelis & Leonard J. Paas, 2013. "A dynamic analysis of stock markets using a hidden Markov model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1682-1700, August.
    3. Enrique E. Alvarez, 2005. "Estimation in Stationary Markov Renewal Processes, with Application to Earthquake Forecasting in Turkey," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 119-130, March.
    4. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    5. C. E. Pertsinidou & G. Tsaklidis & E. Papadimitriou & N. Limnios, 2017. "Application of hidden semi-Markov models for the seismic hazard assessment of the North and South Aegean Sea, Greece," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(6), pages 1064-1085, April.
    6. Irene Votsi & Nikolaos Limnios & George Tsaklidis & Eleftheria Papadimitriou, 2012. "Estimation of the Expected Number of Earthquake Occurrences Based on Semi-Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 685-703, September.
    7. Giovanni Masala, 2012. "Earthquakes occurrences estimation through a parametric semi-Markov approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 81-96, March.
    8. G. Kavitha & A. Udhayakumar & D. Nagarajan, 2013. "Stock Market Trend Analysis Using Hidden Markov Models," Papers 1311.4771, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Antunes & Luis Alberiko Gil-Alana & Rossana Riccardi & Yong Tan & Peter Wanke, 2022. "Unveiling endogeneity and temporal dependence in energy prices and demand in Iberian countries: a stochastic hidden Markov model approach," Annals of Operations Research, Springer, vol. 313(1), pages 191-229, June.
    2. Marcell T. Kurbucz & P'eter P'osfay & Antal Jakov'ac, 2022. "Linear Laws of Markov Chains with an Application for Anomaly Detection in Bitcoin Prices," Papers 2201.09790, arXiv.org.
    3. Gámiz, M.L. & Navas-Gómez, F. & Raya-Miranda, R. & Segovia-García, M.C., 2023. "Dynamic reliability and sensitivity analysis based on HMM models with Markovian signal process," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    2. Bountzis, P. & Papadimitriou, E. & Tsaklidis, G., 2020. "Earthquake clusters identification through a Markovian Arrival Process (MAP): Application in Corinth Gulf (Greece)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Md. Asaduzzaman & A. Latif, 2014. "A parametric Markov renewal model for predicting tropical cyclones in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 597-612, September.
    4. Vlad Stefan Barbu & Nicolas Vergne, 2019. "Reliability and Survival Analysis for Drifting Markov Models: Modeling and Estimation," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1407-1429, December.
    5. Anton Gerunov, 2023. "Stock Returns Under Different Market Regimes: An Application of Markov Switching Models to 24 European Indices," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 18-35.
    6. Somayajulu L. N. Dhulipala & Madeleine M. Flint, 2020. "Capabilities of multivariate Bayesian inference toward seismic hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3123-3144, September.
    7. Irene Votsi & Nikolaos Limnios & George Tsaklidis & Eleftheria Papadimitriou, 2012. "Estimation of the Expected Number of Earthquake Occurrences Based on Semi-Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 685-703, September.
    8. Beatrice Foroni & Luca Merlo & Lea Petrella, 2023. "Quantile and expectile copula-based hidden Markov regression models for the analysis of the cryptocurrency market," Papers 2307.06400, arXiv.org.
    9. Battarra, Maria & Balcik, Burcu & Xu, Huifu, 2018. "Disaster preparedness using risk-assessment methods from earthquake engineering," European Journal of Operational Research, Elsevier, vol. 269(2), pages 423-435.
    10. Eugene W. Park, 2023. "Principal Component Analysis and Hidden Markov Model for Forecasting Stock Returns," Papers 2307.00459, arXiv.org.
    11. Fulvia Pennoni & Francesco Bartolucci & Gianfranco Forte & Ferdinando Ametrano, 2022. "Exploring the dependencies among main cryptocurrency log‐returns: A hidden Markov model," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(1), February.
    12. C. E. Pertsinidou & G. Tsaklidis & E. Papadimitriou & N. Limnios, 2017. "Application of hidden semi-Markov models for the seismic hazard assessment of the North and South Aegean Sea, Greece," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(6), pages 1064-1085, April.
    13. Eun-chong Kim & Han-wook Jeong & Nak-young Lee, 2019. "Global Asset Allocation Strategy Using a Hidden Markov Model," JRFM, MDPI, vol. 12(4), pages 1-15, November.
    14. D’Amico, Guglielmo & Petroni, Filippo, 2023. "ROCOF of higher order for semi-Markov processes," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    15. Beatrice Foroni & Luca Merlo & Lea Petrella, 2023. "Expectile hidden Markov regression models for analyzing cryptocurrency returns," Papers 2301.09722, arXiv.org, revised Jan 2024.
    16. Gámiz, María Luz & Limnios, Nikolaos & Segovia-García, María del Carmen, 2023. "Hidden markov models in reliability and maintenance," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1242-1255.
    17. Lennart Oelschlager & Timo Adam, 2020. "Detecting bearish and bullish markets in financial time series using hierarchical hidden Markov models," Papers 2007.14874, arXiv.org.
    18. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    19. Reetam Majumder & Qing Ji & Nagaraj K. Neerchal, 2023. "Optimal Stock Portfolio Selection with a Multivariate Hidden Markov Model," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 177-198, May.
    20. William Mohanty & Alok Mohapatra & Akhilesh Verma, 2015. "A probabilistic approach toward earthquake hazard assessment using two first-order Markov models in Northeastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2399-2419, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.