IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v208y2021ics0951832020308395.html
   My bibliography  Save this article

Power outage prediction for natural hazards using synthetic power distribution systems

Author

Listed:
  • Zhai, Chengwei
  • Chen, Thomas Ying-jeh
  • White, Anna Grace
  • Guikema, Seth David

Abstract

Power outage prediction for natural hazards usually relies on one of two approaches, statistical models or fragility-based methods. Statistical models have provided strong predictive accuracy, but only in an area-aggregated manner. Fragility-based approaches have not offered strong prediction accuracy and have been limited to systems for which system topology or performance models are available. In this paper, we create an algorithm that (1) generates a synthetic power system layout for any U.S. city based only on public data and then (2) simulates power outages at the level of individual buildings under hazard loading using fragility functions. This approach provides much more localized, building-level estimates of the likelihood of losing power due to a natural hazard. We validate our model by comparing the network properties and power outage events based on our approach with data from a real power system in Ohio. We find that our model relies on less input data comparing to statistical learning approaches yet can make accurate predictions, provided accurate fragility curves are available.

Suggested Citation

  • Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:reensy:v:208:y:2021:i:c:s0951832020308395
    DOI: 10.1016/j.ress.2020.107348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020308395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guikema, Seth D., 2009. "Natural disaster risk analysis for critical infrastructure systems: An approach based on statistical learning theory," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 855-860.
    2. Andrea Staid & Seth Guikema & Roshanak Nateghi & Steven Quiring & Michael Gao, 2014. "Simulation of tropical cyclone impacts to the U.S. power system under climate change scenarios," Climatic Change, Springer, vol. 127(3), pages 535-546, December.
    3. Giuditta Pisano & Nayeem Chowdhury & Massimiliano Coppo & Nicola Natale & Giacomo Petretto & Gian Giuseppe Soma & Roberto Turri & Fabrizio Pilo, 2019. "Synthetic Models of Distribution Networks Based on Open Data and Georeferenced Information," Energies, MDPI, vol. 12(23), pages 1-24, November.
    4. Seung‐Ryong Han & Seth D. Guikema & Steven M. Quiring, 2009. "Improving the Predictive Accuracy of Hurricane Power Outage Forecasts Using Generalized Additive Models," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1443-1453, October.
    5. Alex Valenzuela & Esteban Inga & Silvio Simani, 2019. "Planning of a Resilient Underground Distribution Network Using Georeferenced Data," Energies, MDPI, vol. 12(4), pages 1-20, February.
    6. Jichao He & David W. Wanik & Brian M. Hartman & Emmanouil N. Anagnostou & Marina Astitha & Maria E. B. Frediani, 2017. "Nonparametric Tree‐Based Predictive Modeling of Storm Outages on an Electric Distribution Network," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 441-458, March.
    7. Roshanak Nateghi & Seth Guikema & Steven M. Quiring, 2014. "Power Outage Estimation for Tropical Cyclones: Improved Accuracy with Simpler Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1069-1078, June.
    8. Salman, Abdullahi M. & Li, Yue & Stewart, Mark G., 2015. "Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 319-333.
    9. Seung‐Ryong Han & David Rosowsky & Seth Guikema, 2014. "Integrating Models and Data to Estimate the Structural Reliability of Utility Poles During Hurricanes," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1079-1094, June.
    10. D. Brent McRoberts & Steven M. Quiring & Seth D. Guikema, 2018. "Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2722-2737, December.
    11. Han, Seung-Ryong & Guikema, Seth D. & Quiring, Steven M. & Lee, Kyung-Ho & Rosowsky, David & Davidson, Rachel A., 2009. "Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 199-210.
    12. Abdul Rahman, Fariz & Varuttamaseni, Athi & Kintner-Meyer, Michael & Lee, John C., 2013. "Application of fault tree analysis for customer reliability assessment of a distribution power system," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 76-85.
    13. Seth D. Guikema & Steven M. Quiring & Seung‐Ryong Han, 2010. "Prestorm Estimation of Hurricane Damage to Electric Power Distribution Systems," Risk Analysis, John Wiley & Sons, vol. 30(12), pages 1744-1752, December.
    14. Guikema, S.D. & Quiring, S.M., 2012. "Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 178-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jasiūnas, Justinas & Heikkinen, Tatu & Lund, Peter D. & Láng-Ritter, Ilona, 2023. "Resilience of electric grid to extreme wind: Considering local details at national scale," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani, 2021. "Energy system resilience – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Joel Seppälä & Pertti Järventausta, 2024. "Analyzing Supply Reliability Incentive in Pricing Regulation of Electricity Distribution Operators," Energies, MDPI, vol. 17(6), pages 1-17, March.
    4. Wang, Jian & Liu, Huiyuan & Gao, Shibin & Yu, Long & Liu, Xingyang & Zhang, Dongkai & Kou, Lei, 2024. "Robust deep Gaussian process-based trustworthy fog-haze-caused pollution flashover prediction approach for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Lu, Qin & Zhang, Wei, 2022. "Integrating dynamic Bayesian network and physics-based modeling for risk analysis of a time-dependent power distribution system during hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Kairui Feng & Min Ouyang & Ning Lin, 2022. "Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Jasiūnas, Justinas & Láng-Ritter, Ilona & Heikkinen, Tatu & Lund, Peter D., 2024. "Case beyond historical severity: Winds, faults, outages, and costs for electric grid," Applied Energy, Elsevier, vol. 373(C).
    10. Olukunle O. Owolabi & Deborah A. Sunter, 2022. "Bayesian Optimization and Hierarchical Forecasting of Non-Weather-Related Electric Power Outages," Energies, MDPI, vol. 15(6), pages 1-22, March.
    11. Ceferino, Luis & Lin, Ning & Xi, Dazhi, 2023. "Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Justinas Jasiūnas & Ilona Láng-Ritter & Tatu Heikkinen & Peter D. Lund, 2023. "Electricity Load Lost in the Largest Windstorms—Is the Fragility-Based Model up to the Task?," Energies, MDPI, vol. 16(15), pages 1-23, July.
    13. Vitor Hugo Ferreira & Rubens Lucian da Silva Correa & Angelo Cesar Colombini & Márcio Zamboti Fortes & Flávio Luis de Mello & Fernando Carvalho Cid de Araujo & Natanael Rodrigues Pereira, 2021. "Big Data Analytics for Spatio-Temporal Service Orders Demand Forecasting in Electric Distribution Utilities," Energies, MDPI, vol. 14(23), pages 1-16, November.
    14. Zhang, Jintao & Bagtzoglou, Yiannis & Zhu, Jin & Li, Baikun & Zhang, Wei, 2023. "Fragility-based system performance assessment of critical power infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. D. Brent McRoberts & Steven M. Quiring & Seth D. Guikema, 2018. "Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2722-2737, December.
    4. Dimitris N. Trakas & Mathaios Panteli & Nikos D. Hatziargyriou & Pierluigi Mancarella, 2019. "Spatial Risk Analysis of Power Systems Resilience During Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 195-211, January.
    5. Zhang, Jintao & Bagtzoglou, Yiannis & Zhu, Jin & Li, Baikun & Zhang, Wei, 2023. "Fragility-based system performance assessment of critical power infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Berk A. Alpay & David Wanik & Peter Watson & Diego Cerrai & Guannan Liang & Emmanouil Anagnostou, 2020. "Dynamic Modeling of Power Outages Caused by Thunderstorms," Forecasting, MDPI, vol. 2(2), pages 1-12, May.
    7. Otto, Räisänen & Susanne, Suvanto & Jouni, Haapaniemi & Jukka, Lassila, 2023. "Crown snow load outage risk model for overhead lines," Applied Energy, Elsevier, vol. 343(C).
    8. Feifei Yang & David W. Wanik & Diego Cerrai & Md Abul Ehsan Bhuiyan & Emmanouil N. Anagnostou, 2020. "Quantifying Uncertainty in Machine Learning-Based Power Outage Prediction Model Training: A Tool for Sustainable Storm Restoration," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    9. Xue, Jiayue & Mohammadi, Farshad & Li, Xin & Sahraei-Ardakani, Mostafa & Ou, Ge & Pu, Zhaoxia, 2020. "Impact of transmission tower-line interaction to the bulk power system during hurricane," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    10. Olukunle O. Owolabi & Deborah A. Sunter, 2022. "Bayesian Optimization and Hierarchical Forecasting of Non-Weather-Related Electric Power Outages," Energies, MDPI, vol. 15(6), pages 1-22, March.
    11. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Gina L. Tonn & Seth D. Guikema & Celso M. Ferreira & Steven M. Quiring, 2016. "Hurricane Isaac: A Longitudinal Analysis of Storm Characteristics and Power Outage Risk," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1936-1947, October.
    13. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    14. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    15. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    16. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    17. Jichao He & David W. Wanik & Brian M. Hartman & Emmanouil N. Anagnostou & Marina Astitha & Maria E. B. Frediani, 2017. "Nonparametric Tree‐Based Predictive Modeling of Storm Outages on an Electric Distribution Network," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 441-458, March.
    18. Jasiūnas, Justinas & Heikkinen, Tatu & Lund, Peter D. & Láng-Ritter, Ilona, 2023. "Resilience of electric grid to extreme wind: Considering local details at national scale," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    19. Christine L. Berner & Andrea Staid & Roger Flage & Seth D. Guikema, 2017. "The Use of Simulation to Reduce the Domain of “Black Swans” with Application to Hurricane Impacts to Power Systems," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1879-1897, October.
    20. Oh, Seongmun & Jufri, Fauzan Hanif & Choi, Min-Hee & Jung, Jaesung, 2022. "A study of tropical cyclone impact on the power distribution grid in South Korea for estimating damage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:208:y:2021:i:c:s0951832020308395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.