IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v220y2022ics0951832021007638.html
   My bibliography  Save this article

Time-dependent kinematic reliability analysis of gear mechanism based on sequential decoupling strategy and saddle-point approximation

Author

Listed:
  • Chen, Junhua
  • Chen, Longmiao
  • Qian, Linfang
  • Chen, Guangsong
  • Zhou, Shijie

Abstract

Accurate and efficient reliability evaluation is critical to ensure the safety of gear mechanism. This paper aims to develop an effective and practical method for time-dependent kinematic reliability of gear mechanism. Firstly, dynamic model of gear mechanism is established, and a surrogate model of kinematic error is obtained based on BP neural network. After that, we employ a sequential decoupling strategy of efficient global optimization to transform the time-dependent reliability problem into a time-independent one, with which the second-order information of the extreme limit-state function can be then obtained. Finally, the saddle-point approximation method is applied to estimate the time-dependent kinematic reliability of the gear mechanism. The accuracy and efficiency of the proposed method are verified by several engineering problems, and comparisons are made against other existing reliability methods. Results of the engineering cases show that the proposed method can effectively reduce the limit-state function call numbers while reaching the same accuracy as Monte Carlo Simulation.

Suggested Citation

  • Chen, Junhua & Chen, Longmiao & Qian, Linfang & Chen, Guangsong & Zhou, Shijie, 2022. "Time-dependent kinematic reliability analysis of gear mechanism based on sequential decoupling strategy and saddle-point approximation," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007638
    DOI: 10.1016/j.ress.2021.108292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021007638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2021. "A single-loop Kriging coupled with subset simulation for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Wang, Zequn & Chen, Wei, 2016. "Time-variant reliability assessment through equivalent stochastic process transformation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 166-175.
    3. Wang, Lei & Zhang, Xufang & Zhou, Yangjunjian, 2018. "An effective approach for kinematic reliability analysis of steering mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 62-76.
    4. Hawchar, Lara & El Soueidy, Charbel-Pierre & Schoefs, Franck, 2017. "Principal component analysis and polynomial chaos expansion for time-variant reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 406-416.
    5. Bao, Yuequan & Xiang, Zhengliang & Li, Hui, 2021. "Adaptive subset searching-based deep neural network method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Li, Mingyang & Wang, Zequn, 2019. "Surrogate model uncertainty quantification for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    7. Ameryan, Ala & Ghalehnovi, Mansour & Rashki, Mohsen, 2022. "AK-SESC: a novel reliability procedure based on the integration of active learning kriging and sequential space conversion method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2020. "Time-variant reliability analysis for industrial robot RV reducer under multiple failure modes using Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Bohua & Wang, Weigang & Lei, Haoran & Hu, Xiancun & Li, Chun-Qing, 2024. "An improved analytical solution to outcrossing rate for scalar nonstationary and non-gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    2. Chen, Zequan & Li, Guofa & He, Jialong & Yang, Zhaojun & Wang, Jili, 2022. "Adaptive structural reliability analysis method based on confidence interval squeezing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Ouyang, Linhan & Che, Yushuai & Park, Chanseok & Chen, Yuejian, 2024. "A novel active learning Gaussian process modeling-based method for time-dependent reliability analysis considering mixed variables," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Huang, Peng & Gu, Yingkui & Li, He & Yazdi, Mohammad & Qiu, Guangqi, 2023. "An Optimal Tolerance Design Approach of Robot Manipulators for Positioning Accuracy Reliability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Yang, Bin & Yang, Wenyu, 2023. "Modular approach to kinematic reliability analysis of industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Zeng, Chen-dong & Qiu, Zhi-cheng & Zhang, Fen-hua & Zhang, Xian-min, 2023. "Error modelling and motion reliability analysis of a multi-DOF redundant parallel mechanism with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Zhang, Dequan & Shen, Shuoshuo & Wu, Jinhui & Wang, Fang & Han, Xu, 2023. "Kinematic trajectory accuracy reliability analysis for industrial robots considering intercorrelations among multi-point positioning errors," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Bin & Yang, Wenyu, 2023. "Modular approach to kinematic reliability analysis of industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Zhao, Zhao & Zhao, Yan-Gang & Li, Pei-Pei, 2023. "A novel decoupled time-variant reliability-based design optimization approach by improved extreme value moment method," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Wang, Zhonglai & Liu, Jing & Yu, Shui, 2020. "Time-variant reliability prediction for dynamic systems using partial information," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    10. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2024. "A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Jiang, Chen & Yan, Yifang & Wang, Dapeng & Qiu, Haobo & Gao, Liang, 2021. "Global and local Kriging limit state approximation for time-dependent reliability-based design optimization through wrong-classification probability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    12. Huang, Shi-Ya & Zhang, Shao-He & Liu, Lei-Lei, 2022. "A new active learning Kriging metamodel for structural system reliability analysis with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Cheng, Kai & Lu, Zhenzhou, 2019. "Time-variant reliability analysis based on high dimensional model representation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 310-319.
    14. Pepper, Nick & Crespo, Luis & Montomoli, Francesco, 2022. "Adaptive learning for reliability analysis using Support Vector Machines," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    15. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    16. Zhang, Kun & Chen, Ning & Zeng, Peng & Liu, Jian & Beer, Michael, 2022. "An efficient reliability analysis method for structures with hybrid time-dependent uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Yang, Seonghyeok & Jo, Hwisang & Lee, Kyungeun & Lee, Ikjin, 2022. "Expected system improvement (ESI): A new learning function for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Bao, Yuequan & Sun, Huabin & Guan, Xiaoshu & Tian, Yuxuan, 2024. "An active learning method using deep adversarial autoencoder-based sufficient dimension reduction neural network for high-dimensional reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    19. Jakeman, John D. & Kouri, Drew P. & Huerta, J. Gabriel, 2022. "Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.