A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2022.108444
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zang, Yu & Shangguan, Wei & Cai, Baigen & Wang, Huasheng & Pecht, Michael. G., 2021. "Hybrid remaining useful life prediction method. A case study on railway D-cables," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Shi, Zunya & Chehade, Abdallah, 2021. "A dual-LSTM framework combining change point detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
- Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
- Cao, Yudong & Ding, Yifei & Jia, Minping & Tian, Rushuai, 2021. "A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Jouin, Marine & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine, 2016. "Degradations analysis and aging modeling for health assessment and prognostics of PEMFC," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 78-95.
- Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2018. "Nonlinear step-stress accelerated degradation modelling considering three sources of variability," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 207-215.
- Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Li, Xiang & Zhang, Wei & Ding, Qian, 2019. "Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 208-218.
- Yu, Wennian & Tu, Wenbing & Kim, Il Yong & Mechefske, Chris, 2021. "A nonlinear-drift-driven Wiener process model for remaining useful life estimation considering three sources of variability," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- da Costa, Paulo Roberto de Oliveira & Akçay, Alp & Zhang, Yingqian & Kaymak, Uzay, 2020. "Remaining useful lifetime prediction via deep domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Liu, Junqiang & Lei, Fan & Pan, Chunlu & Hu, Dongbin & Zuo, Hongfu, 2021. "Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Yao, Wen & Zheng, Xiaohu & Zhang, Jun & Wang, Ning & Tang, Guijian, 2023. "Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Li, Wanxiang & Shang, Zhiwu & Gao, Maosheng & Qian, Shiqi & Feng, Zehua, 2022. "Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Xia, Jun & Feng, Yunwen & Teng, Da & Chen, Junyu & Song, Zhicen, 2022. "Distance self-attention network method for remaining useful life estimation of aeroengine with parallel computing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Zhuang, Liangliang & Xu, Ancha & Wang, Xiao-Lin, 2023. "A prognostic driven predictive maintenance framework based on Bayesian deep learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Li, Zhanhang & Zhou, Jian & Nassif, Hani & Coit, David & Bae, Jinwoo, 2023. "Fusing physics-inferred information from stochastic model with machine learning approaches for degradation prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Li, Xiang & Luo, Hao & Yin, Shen, 2022. "Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Xiang, Sheng & Qin, Yi & Luo, Jun & Pu, Huayan & Tang, Baoping, 2021. "Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Arias Chao, Manuel & Kulkarni, Chetan & Goebel, Kai & Fink, Olga, 2022. "Fusing physics-based and deep learning models for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Yi Lyu & Qichen Zhang & Zhenfei Wen & Aiguo Chen, 2022. "Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
- Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Bae, Jinwoo & Xi, Zhimin, 2022. "Learning of physical health timestep using the LSTM network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Xu, Dan & Xiao, Xiaoqi & Liu, Jie & Sui, Shaobo, 2023. "Spatio-temporal degradation modeling and remaining useful life prediction under multiple operating conditions based on attention mechanism and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
More about this item
Keywords
Prognostic and health management; Remaining useful life estimation; Deep learning; Self-attention neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022001090. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.