IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006865.html
   My bibliography  Save this article

Prediction of pipeline fatigue crack propagation under rockfall impact based on multilayer perceptron

Author

Listed:
  • Xie, Mingjiang
  • Wang, Yifei
  • Zhao, Jianli
  • Pei, Xianjun
  • Zhang, Tairui

Abstract

Recently, the artificial intelligence technologies have been widely used in the field of pipeline integrity management. When crossing mountains, pipelines would inevitably encounter rockfall impact, which will potentially affect the growth of crack. However, previous research barely investigated the effect of sudden rockfall impact on health management of pipelines with fatigue cracks. To overcome this limitation, a novel crack propagation prediction algorithm based is proposed for pipelines subjected to rockfall impact. The stress intensity factor (SIF) rockfall impact ratio is introduced to describe the interaction effect of rockfall on the fatigue crack of pipelines. And the dynamic SIF values are acquired by finite element modeling (FEM) where 354 models with different parameters are analyzed. To more accurately forecast the crack growth under the rockfall impact, a method integrates multilayer perceptron (MLP) with Paris’ law is proposed based on the above reliable database. Two parameters impacting the performance of the network including the number of neurons in the hidden layer and the hidden layer's activation function are evaluated and network with the most precise prediction results is selected. Quantitative analyses are performed for key factors including rockfall mass, impact velocity, impact position and crack size. The prediction results using dynamic SIF values are compared with the static ones to indicate the effect of rockfall on the crack propagation. The proposed method is valuable to support decision-making in pipeline reliability assessment and integrity management.

Suggested Citation

  • Xie, Mingjiang & Wang, Yifei & Zhao, Jianli & Pei, Xianjun & Zhang, Tairui, 2024. "Prediction of pipeline fatigue crack propagation under rockfall impact based on multilayer perceptron," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006865
    DOI: 10.1016/j.ress.2023.109772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Yue & Li, Jingfa & Yu, Bo & Zhao, Yanlin & Yao, Jun, 2021. "Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Wang, Chao & Zhu, Tao & Yang, Bing & Yin, Minxuan & Xiao, Shoune & Yang, Guangwu, 2023. "Remaining useful life prediction framework for crack propagation with a case study of railway heavy duty coupler condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Chen, Zhanfeng & Li, Xuyao & Wang, Wen & Li, Yan & Shi, Lei & Li, Yuxing, 2023. "Residual strength prediction of corroded pipelines using multilayer perceptron and modified feedforward neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Haoyuan, Shen & Yizhong, Ma & Chenglong, Lin & Jian, Zhou & Lijun, Liu, 2023. "Hierarchical Bayesian support vector regression with model parameter calibration for reliability modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Huang, Cheng-Hao & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2023. "Network reliability prediction for random capacitated-flow networks via an artificial neural network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Xie, Mingjiang & Zhao, Jianli & Zuo, Ming J. & Tian, Zhigang & Liu, Libin & Wu, Jinming, 2023. "Multi-objective maintenance decision-making of corroded parallel pipeline systems," Applied Energy, Elsevier, vol. 351(C).
    7. Zhang, Tieyao & Shuai, Jian & Shuai, Yi & Hua, Luoyi & Xu, Kui & Xie, Dong & Mei, Yuan, 2023. "Efficient prediction method of triple failure pressure for corroded pipelines under complex loads based on a backpropagation neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao, Xingyuan & Zhao, Hong, 2023. "Novel method for residual strength prediction of defective pipelines based on HTLBO-DELM model," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Wang, Chang & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Zhu, Zhu & Liao, Qi, 2022. "Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines," Energy, Elsevier, vol. 261(PB).
    5. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Wang, Yifei & Xie, Mingjiang & Su, Chun, 2024. "Multi-objective maintenance strategy for corroded pipelines considering the correlation of different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Chen, Yinuo & Xie, Shuyi & Tian, Zhigang, 2022. "Risk assessment of buried gas pipelines based on improved cloud-variable weight theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Miao, Xingyuan & Zhao, Hong, 2024. "Corroded submarine pipeline degradation prediction based on theory-guided IMOSOA-EL model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Li, Gang & Hu, Jiayao & Ding, Yaping & Tang, Aimin & Ao, Jiaxing & Hu, Dalong & Liu, Yang, 2024. "A novel method for fault diagnosis of fluid end of drilling pump under complex working conditions," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    10. Keshun, You & Guangqi, Qiu & Yingkui, Gu, 2024. "Optimizing prior distribution parameters for probabilistic prediction of remaining useful life using deep learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Chen, Zhanfeng & Li, Xuyao & Wang, Wen & Li, Yan & Shi, Lei & Li, Yuxing, 2023. "Residual strength prediction of corroded pipelines using multilayer perceptron and modified feedforward neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Liu, Lujie & Xiao, Yiyong & Yang, Jun, 2024. "Daily optimization of maintenance routing and scheduling in a large-scale photovoltaic power plant with time-varying output power," Applied Energy, Elsevier, vol. 360(C).
    13. Zhang, Tieyao & Shuai, Jian & Shuai, Yi & Hua, Luoyi & Xu, Kui & Xie, Dong & Mei, Yuan, 2023. "Efficient prediction method of triple failure pressure for corroded pipelines under complex loads based on a backpropagation neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Li, Pengyu & Wang, Xiufang & Jiang, Chunlei & Bi, Hongbo & Liu, Yongzhi & Yan, Wendi & Zhang, Cong & Dong, Taiji & Sun, Yu, 2024. "Advanced transformer model for simultaneous leakage aperture recognition and localization in gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Zhou, Jie & Lin, Haifei & Li, Shugang & Jin, Hongwei & Zhao, Bo & Liu, Shihao, 2023. "Leakage diagnosis and localization of the gas extraction pipeline based on SA-PSO BP neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    16. Yue Su & Jingfa Li & Wangyi Guo & Yanlin Zhao & Jianli Li & Jie Zhao & Yusheng Wang, 2022. "Prediction of Mixing Uniformity of Hydrogen Injection inNatural Gas Pipeline Based on a Deep Learning Model," Energies, MDPI, vol. 15(22), pages 1-19, November.
    17. Lingyun, Guo & Markus, Niffenegger & Jing, Zhou, 2022. "A novel procedure to evaluate the performance of failure assessment models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. Zheng, Jianqin & Wang, Chang & Liang, Yongtu & Liao, Qi & Li, Zhuochao & Wang, Bohong, 2022. "Deeppipe: A deep-learning method for anomaly detection of multi-product pipelines," Energy, Elsevier, vol. 259(C).
    19. Azhdari, Armaghan & Ardakan, Mostafa Abouei & Najafi, Mojtaba, 2023. "An approach for reliability optimization of a multi-state centralized network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Wang, Jian & Liu, Huiyuan & Gao, Shibin & Yu, Long & Liu, Xingyang & Zhang, Dongkai & Kou, Lei, 2024. "Robust deep Gaussian process-based trustworthy fog-haze-caused pollution flashover prediction approach for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.