IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i19p5841-5862.html
   My bibliography  Save this article

Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis

Author

Listed:
  • Yihai He
  • Changchao Gu
  • Zhaoxiang Chen
  • Xiao Han

Abstract

Predictive maintenance (PdM) is an effective means to eliminate potential failures, ensure stable equipment operation and improve the mission reliability of manufacturing systems and the quality of products, which is the premise of intelligent manufacturing. Therefore, an integrated PdM strategy considering product quality level and mission reliability state is proposed regarding the intelligent manufacturing philosophy of ‘prediction and manufacturing’. First, the key process variables are identified and integrated into the evaluation of the equipment degradation state. Second, the quality deviation index is defined to describe the quality of the product quantitatively according to the co-effect of manufacturing system component reliability and product quality in the quality–reliability chain. Third, to achieve changeable production task demands, mission reliability is defined to characterise the equipment production states comprehensively. The optimal integrated PdM strategy, which combines quality control and mission reliability analysis, is obtained by minimising the total cost. Finally, a case study on decision-making with the integrated PdM strategy for a cylinder head manufacturing system is presented to validate the effectiveness of the proposed method. The final results shows that proposed method achieves approximately 26.02 and 20.54% cost improvement over periodic preventive maintenance and conventional condition-based maintenance respectively.

Suggested Citation

  • Yihai He & Changchao Gu & Zhaoxiang Chen & Xiao Han, 2017. "Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5841-5862, October.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:19:p:5841-5862
    DOI: 10.1080/00207543.2017.1346843
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1346843
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1346843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xiaoyue & Hillston, Jane, 2015. "Mission reliability of semi-Markov systems under generalized operational time requirements," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 122-129.
    2. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    3. Peng, Hao & van Houtum, Geert-Jan, 2016. "Joint optimization of condition-based maintenance and production lot-sizing," European Journal of Operational Research, Elsevier, vol. 253(1), pages 94-107.
    4. Rivera-Gómez, Héctor & Gharbi, Ali & Kenné, Jean Pierre, 2013. "Joint production and major maintenance planning policy of a manufacturing system with deteriorating quality," International Journal of Production Economics, Elsevier, vol. 146(2), pages 575-587.
    5. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    6. Dongjin Lee & Rong Pan, 2017. "Predictive maintenance of complex system with multi-level reliability structure," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4785-4801, August.
    7. Tinga, Tiedo, 2010. "Application of physical failure models to enable usage and load based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1061-1075.
    8. Alsyouf, Imad, 2007. "The role of maintenance in improving companies' productivity and profitability," International Journal of Production Economics, Elsevier, vol. 105(1), pages 70-78, January.
    9. Awad, Mahmoud, 2016. "Economic allocation of reliability growth testing using Weibull distributions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 273-280.
    10. Gilardoni, Gustavo L. & de Toledo, Maria Luiza Guerra & Freitas, Marta A. & Colosimo, Enrico A., 2016. "Dynamics of an optimal maintenance policy for imperfect repair models," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1104-1112.
    11. Nourelfath, Mustapha & Nahas, Nabil & Ben-Daya, Mohamed, 2016. "Integrated preventive maintenance and production decisions for imperfect processes," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 21-31.
    12. Cha, Ji Hwan, 2016. "New stochastic models for preventive maintenance and maintenance optimizationAuthor-Name: Lee, Hyunju," European Journal of Operational Research, Elsevier, vol. 255(1), pages 80-90.
    13. Bouslah, B. & Gharbi, A. & Pellerin, R., 2016. "Integrated production, sampling quality control and maintenance of deteriorating production systems with AOQL constraint," Omega, Elsevier, vol. 61(C), pages 110-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Guo Qing & Zhou, Bing Hai & Li, Ling, 2018. "Integrated production, quality control and condition-based maintenance for imperfect production systems," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 251-264.
    2. Song Jiu, 2021. "A two-phase approach for integrating preventive maintenance with production and delivery in an unreliable coal mine," Journal of Heuristics, Springer, vol. 27(6), pages 991-1020, December.
    3. Liao, Ruoyu & He, Yihai & Feng, Tianyu & Yang, Xiuzhen & Dai, Wei & Zhang, Weifang, 2023. "Mission reliability-driven risk-based predictive maintenance approach of multistate manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Zhang, Tian & Homri, Lazhar & Dantan, Jean-Yves & Siadat, Ali, 2023. "Models for reliability assessment of reconfigurable manufacturing system regarding configuration orders," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Ai, Jun, 2022. "Integrated mission reliability modeling based on extended quality state task network for intelligent multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Sinisterra, Wilfrido Quiñones & Lima, Victor Hugo Resende & Cavalcante, Cristiano Alexandre Virginio & Aribisala, Adetoye Ayokunle, 2023. "A delay-time model to integrate the sequence of resumable jobs, inspection policy, and quality for a single-component system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Thirupathi Samala & Vijaya Kumar Manupati & Maria Leonilde R. Varela & Goran Putnik, 2021. "Investigation of Degradation and Upgradation Models for Flexible Unit Systems: A Systematic Literature Review," Future Internet, MDPI, vol. 13(3), pages 1-18, February.
    8. Shi, Haohao & Zhang, Ji & Zio, Enrico & Zhao, Xufeng, 2023. "Opportunistic maintenance policies for multi-machine production systems with quality and availability improvement," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Yue-Yi Zhang & Han-Ting Zhou & Ijaz Younis & Li Zhou, 2021. "Coupling Coordination Analysis of Technological Innovation, Standards, and Quality: Evidence From China," SAGE Open, , vol. 11(3), pages 21582440211, July.
    10. Zhao, Xian & Li, Rong & Cao, Shuai & Qiu, Qingan, 2023. "Joint modeling of loading and mission abort policies for systems operating in dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. He, Yihai & Zhao, Yixiao & Han, Xiao & Zhou, Di & Wang, Wenzhuo, 2020. "Functional risk-oriented health prognosis approach for intelligent manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Yixiao Zhao & Yihai He & Fengdi Liu & Xiao Han & Anqi Zhang & Di Zhou & Yao Li, 2020. "Operational risk modeling based on operational data fusion for multi-state manufacturing systems," Journal of Risk and Reliability, , vol. 234(2), pages 407-421, April.
    13. Li, Yao & He, Yihai & Liao, Ruoyu & Zheng, Xin & Dai, Wei, 2022. "Integrated predictive maintenance approach for multistate manufacturing system considering geometric and non-geometric defects of products," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Wang, Lin & Lu, Zhiqiang & Ren, Yifei, 2020. "Joint production control and maintenance policy for a serial system with quality deterioration and stochastic demand," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Ye, Zhenggeng & Cai, Zhiqiang & Yang, Hui & Si, Shubin & Zhou, Fuli, 2023. "Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Cheng, Guoqing & Li, Ling, 2020. "Joint optimization of production, quality control and maintenance for serial-parallel multistage production systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Guo Qing & Zhou, Bing Hai & Li, Ling, 2018. "Integrated production, quality control and condition-based maintenance for imperfect production systems," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 251-264.
    2. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    3. Gössinger, Ralf & Helmke, Hanna & Kaluzny, Michael, 2017. "Condition-based release of maintenance jobs in a decentralised production-maintenance system – An analysis of alternative stochastic approaches," International Journal of Production Economics, Elsevier, vol. 193(C), pages 528-537.
    4. Cheng, Guoqing & Li, Ling, 2020. "Joint optimization of production, quality control and maintenance for serial-parallel multistage production systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Evrencan Özcan & Rabia Yumuşak & Tamer Eren, 2019. "Risk Based Maintenance in the Hydroelectric Power Plants," Energies, MDPI, vol. 12(8), pages 1-22, April.
    6. Wang, Lin & Lu, Zhiqiang & Ren, Yifei, 2020. "Joint production control and maintenance policy for a serial system with quality deterioration and stochastic demand," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. uit het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and condition-based production optimization," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. de Jonge, Bram & Jakobsons, Edgars, 2018. "Optimizing block-based maintenance under random machine usage," European Journal of Operational Research, Elsevier, vol. 265(2), pages 703-709.
    9. Hlioui, Rached & Gharbi, Ali & Hajji, Adnène, 2017. "Joint supplier selection, production and replenishment of an unreliable manufacturing-oriented supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 53-67.
    10. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    11. Bouslah, B. & Gharbi, A. & Pellerin, R., 2016. "Joint economic design of production, continuous sampling inspection and preventive maintenance of a deteriorating production system," International Journal of Production Economics, Elsevier, vol. 173(C), pages 184-198.
    12. Ayse Sena Eruguz & Tarkan Tan & Geert‐Jan van Houtum, 2017. "Optimizing usage and maintenance decisions for k‐out‐of‐n systems of moving assets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 418-434, August.
    13. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    14. Johannes Freiesleben & Nicolas Gu'erin, 2015. "Homogenization and Clustering as a Non-Statistical Methodology to Assess Multi-Parametrical Chain Problems," Papers 1505.03874, arXiv.org, revised Dec 2017.
    15. Jiang, Junwei & An, Youjun & Dong, Yuanfa & Hu, Jiawen & Li, Yinghe & Zhao, Ziye, 2023. "Integrated optimization of non-permutation flow shop scheduling and maintenance planning with variable processing speed," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Wiesław Fiebig & Willy Prastiyo, 2022. "Utilization of Mechanical Resonance for the Enhancement of Slider-Crank Mechanism Dynamics in Gas Compression Processes," Energies, MDPI, vol. 15(20), pages 1-27, October.
    17. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.
    18. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Aminu Sahabi Abubakar & Zied Hajej & Aime C. Nyoungue, 2023. "Multi-Product Production Optimization of Maintenance Integrated into the Control Chart Under Service Level and Quality Constraints," International Journal of Operations Management, Inovatus Services Ltd., vol. 3(2), pages 7-21, May.
    20. Rajesh Kumar Singh & Ayush Gupta, 2020. "Framework for sustainable maintenance system: ISM–fuzzy MICMAC and TOPSIS approach," Annals of Operations Research, Springer, vol. 290(1), pages 643-676, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:19:p:5841-5862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.